NSIP

Resources

Title
Doubling of annual forest carbon loss over the tropics during the early twenty-first century
Author(s)
Feng, Yu; Zeng, Zhenzhong; Searchinger, Timothy D.; Ziegler, Alan D.; Wu, Jie; Wang, Dashan; He, Xinyue; Elsen, Paul R.; Ciais, Philippe; Xu, Rongrong; Guo, Zhilin; Peng, Liqing; Tao, Yiheng; Spracklen, Dominick V.; Holden, Joseph; Liu, Xiaoping; Zheng, Yi; Xu, Peng; Chen, Ji; Jiang, Xin; Song, Xiao-Peng; Lakshmi, Venkataraman; Wood, Eric F.; Zheng, Chunmiao
Published
2022
Publisher
Nature Sustainability
Abstract
Previous estimates of tropical forest carbon loss in the twenty-first century using satellite data typically focus on its magnitude, whereas regional loss trajectories and associated drivers are rarely reported. Here we used different high-resolution satellite datasets to show a doubling of gross tropical forest carbon loss worldwide from 0.97 ± 0.16 PgC yr−1 in 2001–2005 to 1.99 ± 0.13 PgC yr−1 in 2015–2019. This increase in carbon loss from forest conversion is higher than in bookkeeping models forced by land-use statistical data, which show no trend or a slight decline in land-use emissions in the early twenty-first century. Most (82%) of the forest carbon loss is at some stages associated with large-scale commodity or small-scale agriculture activities, particularly in Africa and Southeast Asia. We find that ~70% of former forest lands converted to agriculture in 2001–2019 remained so in 2020, confirming a dominant role of agriculture in long-term pan-tropical carbon reductions on formerly forested landscapes. The acceleration and high rate of forest carbon loss in the twenty-first century suggest that existing strategies to reduce forest loss are not successful; and this failure underscores the importance of monitoring deforestation trends following the new pledges made in Glasgow.
Keywords
carbon cycle; sustainability; tropical ecology

Access Full Text

A full-text copy of this article may be available. Please email the WCS Library to request.




Back

PUB27324