

# *Ex situ* conservation of Andean bears includes more than genetic and demographic management

the example of the European population

Lydia Kolter, Kölner Zoo



### Paradigm shift in the 80ties towards

*Ex situ* populations of threatened species becoming self-sustainable and serving to support or enhance the conservation of threatened wild populations:

- conservation education (ambassador role)
- conservation relevant research
- provision of animals for re-introduction (if feasible and needed)



### Preservation of the adaptive potential of species in captivity

**Problem: small highly fragmented populations** 

Population management according to principles derived from population genetics and demography

Close co-operation between holders of a continent and changing attitudes



### Requirements to maintain the demographic potential for growth

- stable age distribution
- reproduction &
- population control
- at carrying capacity





### Reduction of population growth by application of reversible contraceptives

### **Caution**

- in the 5 cases where "reversible" methods were applied the females did not resume breeding after treatment of 1- 2 years.
- In one of these ageing might be the cause.
  - Up to now no female Andean bear older than 23 years reproduced

Endocrinological study is running to detect the underlying hormonal processes



### Reproductive age span of Andean bear females kept in Europe







#### **Alternatives to chemical contraception:**

#### bachelor groups ????



Two related males at Lyon zoo



Two unrelated males at Basel zoo



### Requirements to maintain the genetic potential of small populations

- THE THEORY
- •Sufficient number of wild-born founders ( >20)
- Increase of generation time
- Rapid population growth after founding
- •Large carrying capacity (~250 ind.)
- Equalisation of founder contributions
- •Low variance in family size
- Prevention of inbreeding
- •Equal sex ratio



### THE REALITY: Population growth

- slow population growth after founding in1949
- At the start of the EEP 9 living wild-born animals left

Birth origin of Andean bears in EAZA zoos





#### THE REALITY: Number of founders

#### Breeding performance of wild caught Andean bears in Europe





**THE REALITY:** Influenced and fixed by the breeding history of the Andean bear in Europe

- 1st birth and rearing in January 1953 by a wildcaught female imported pregnant to Basel zoo
- More wild caught bears imported to different zoos in Europe between 1958 and 1977
- Successful breeding with three wild caught pairs at Dresden and Berlin TP in 1963, in Jersey from 1975 & with 3 wild-caught females at Köln, Leipzig, Berlin







### THE REALITY: Founder representation at the beginning of the EEP in 1988





#### **Development of the Andean bear population within the EEP**

KÖLNER ZOO

total —females —males —EEP total —EEP females —EEP males







### Situation in the future with the current population parameters





#### **Closer co-operation between regions necessary**

- co-ordinated and well-considered import of Andean bears from range countries into nonrange countries to maintain genetic diversity
- alleviate space problems
- exchange of information to prevent running into the problems outlined here



Gene diversity was not only lost by non-breeding wild born bears, bottle necks also occurred due to non-reproducing captive born females.

KOLNER ZOC

#### **Breeding performance in captive born females**





#### **Potential reasons for failure to rear cubs:**

- inappropriate denning facilities due to insufficient separation of the female
  - from keepers
  - from con-specifics of both sexes

Ignoring the pregnant female's need for a safe birthing place for rearing altricial young



#### **Potential reasons for failure to rear cubs:**

#### Obviously the female's perception on safety for cubs differs from our knowledge that there is no risk by other bears or keepers

#### **Solution:**

Identification of key features and conditions in the natural habitat to which the species is adapted



#### Creation of a separable/lockable denning area!!!!







### Potential reasons for failure to breed/give birth:

- tendency in group living females: stop to reproduce, when younger animals start
- 6 of the 8 non-breeding females were/are kept in groups with other adult females which successfully reproduced under the same conditions

Ignoring the fact that Andean bears are not gregarious and avoid other adults



#### **Selection factors in our systems?**

which favor pre-adapted individuals
tolerant towards conspecifics/humans
and select against other individuals:
wary, easily aroused, less tolerant against the presence of con-specifics and humans

**Social stress involved?** 



### Social stress seems to play a role in the development of alopecia:

- symmetrical alopecia, restricted to females was recorded for 19% of the females living between 1953 and 2005
- •16 of 17 females with alopecia live(d) in groups with at least one other female

Veterinary research to solve that problem is going on in the EEP



### Animals like these are not useful in conservation education



female with beginning alopecia 2005

the same female 2008





### **Conclusions from these findings**

# In order to manage captive populations properly

# the biology, ecology and social systems of the species have

• to be considered,

to be interpreted and to be translated,

so that the results can be used to design a favourable captive environment



### Improvements of the captive environment to benefit the population and the individuals

## Recommendations in the EAZA Husbandry guidelines for Ursids

- plan as many separable/linkable exhibit units as adult animals should be kept
- equip each unit with the relevant structures
- if more than a pair should be kept, create maternal female lines



#### **Example of Zürich Zoo**

#### exhibit 2500 m<sup>2</sup> three separable linkable units equiped with appropriate resting and feeding places

