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Abstract 
Aim: The fungal pathogen Pseudogymnoascus destructans and resultant white-nose syndrome 
(WNS) continues to advance into western North America, infecting new bat populations, 
species, and hibernacula. Western North America hosts the highest bat diversity in the U.S. and 
Canada, yet little is known about western hibernacula and western bats’ hibernation behavior. 
An improved understanding of where bats hibernate in the West and the conditions that create 
suitable hibernacula is critical if land managers are to anticipate and address the conservation 
needs of WNS-susceptible species.  
Location: United States and Canada 
Taxon: bats 
Methods: We estimated suitability of potential winter hibernaculum sites across the ranges of 
five bat species occurring in the West. We estimated winter survival capacity from a mechanistic 
survivorship model based on bat bioenergetics and climate conditions. Leveraging the Google 
Earth Engine platform for spatial data processing, we used boosted regression trees to relate 
these estimates, along with key landscape attributes, to bat occurrence data in a hybrid 
correlative-mechanistic approach.  
Results: We show that winter survival capacity, topography, land cover, and access to caves 
and mines are important predictors of winter hibernaculum selection, but the shape and relative 
importance of these relationships vary among species. Our findings suggest that the occurrence 
of bat hibernacula can, in part, be predicted from readily mapped above-ground features, and is 
not only dictated by below-ground characteristics for which spatial data are lacking. 
Furthermore, our mechanistic estimate of winter survivorship was among the strongest 
predictors of winter occurrence probability across focal species.  
Main conclusions: Our findings offer an improved understanding of the likely winter distribution 
of bats occurring in the West, and offers a valuable baseline for assessing the potential species-
level impacts of P. destructans as well as future climate change.  
 
Keywords: bat, bioenergetic model, hibernation, hybrid, species distribution model, western 
North America, white-nose syndrome, winter 
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Introduction 
Globally, bats are threatened by a wide range of human impacts, including habitat loss and 
fragmentation, mortality due to roads and energy development, loss of water sources, 
exploitation, and introduction of disease (Voigt & Kingston, 2016). In North America, one of the 
most pressing threats is white-nose syndrome (WNS), caused by a fungal pathogen introduced 
to New York state in 2006, which is rapidly spreading across the continent with dire 
consequences for hibernating bat populations (Leopardi et al., 2015, Frick et al., 2015). In 
response to this novel threat, hibernating bats have been studied intensively in eastern North 
America. In western North America (i.e., west of the Mississippi River, herein the West), where 
WNS has only recently begun to appear (USFWS, 2019), bat hibernation is far less understood. 
The West harbors considerably higher bat diversity than the East (Harvey et al., 2013), and 
western bats hibernate differently (Weller et al., 2018). Western bats generally do not form large 
colonies of thousands of individuals, but instead hibernate in much smaller numbers distributed 
widely across the landscape (Adams, 2003, Bachen et al., 2018). This hibernation behavior, 
along with the ruggedness and remoteness of much of the West, renders bats more difficult to 
study than in the East. This is important as WNS begins to reach the West (USFWS, 2019) and 
as climate change impacts bat populations (Adams, 2010), potentially interacting with the 
effects of WNS. Researchers and managers need new tools to understand how these combined 
stressors are likely to impact western bats, and how to allocate monitoring and management 
resources to minimize impacts to vulnerable populations.  
 
When species are poorly understood, species distribution models (SDMs) help fill a wide variety 
of information needs (Rodriguez et al., 2007). A first step in building knowledge about these 
species and anticipating conservation needs is understanding where they are most likely to 
occur so that they can be better studied, monitored, and managed. SDMs use what we know 
about where a species occurs to predict where it is likely to occur over a broader area. These 
models can then serve many practical purposes, including: 1) informing sampling and 
monitoring efforts (Hauser & McCarthy, 2009, Jarnevich et al., 2006, Williams et al., 2009); 2) 
elucidating movement patterns and metapopulation dynamics (Frey et al., 2012, Lawler et al., 
2013, McClure et al., 2017); 3) reconstructing or predicting changes in distribution over time 
(Beans et al., 2012, Svenning et al., 2011); 4) assessing opportunities for reintroduction or 
assisted migration (Hällfors et al., 2016, Miranda et al., 2019); and 5) anticipating how the 
species may be impacted by climate change, land use change, and other stressors (Doherty et 
al., 2008, La Manna et al., 2008, Johnston et al., 2012). 
 
Modeling species distributions is particularly challenging for subterranean species because 
observations tend to be rare and habitat selection is likely driven by landscape features that are 
not well-represented in existing geodatabases. To estimate the degree to which a species is 
associated with particular landscape characteristics, SDMs typically compare the characteristics 
of sites where a species has been observed to those of sites where the species has not been 
observed or to random sites across an area of interest (Elith & Leathwick, 2009). These models 
often use readily available data describing climate, land cover, and water availability, as these 
attributes are critical for defining species’ physiological and ecological limits. However, the 
landscape attributes to which bats respond when selecting hibernacula are largely unknown, 
and key subterranean habitat attributes may not be captured by available spatial datasets. 
Efforts to model bat distributions, space use, and habitat selection have increased rapidly in 
recent years (e.g., Razgour et al., 2016, Zamora-Guitierrez et al., 2018, Burke et al., 2019, 
Delgado-Jaramillo et al., 2020). Few, however, have attempted to model distributions of winter 
hibernacula (but see Russell et al., 2014, Smeraldo et al., 2018, Weller et al., 2018), and none 
to our knowledge have predictively mapped occurrence probability or abundance in the West.  
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Climate is expected to be an important driver of bat winter distributions given that hibernaculum 
temperature and winter duration dictate the length of time that hibernating bats can survive on 
their fat stores (Thomas et al., 1990, Speakman & Thomas, 2003). Climate metrics (e.g., mean 
annual temperature, annual precipitation) are often included as predictors in SDMs (e.g., 
Kadmon et al., 2003, Peterson & Vieglais, 2001, Phillips et al., 2006). Yet, recent intensive 
study of bat hibernation physiology offers a far more detailed mechanistic understanding of how 
temperature and humidity affect bat metabolic rates and their ability to survive winter. Moreover, 
we now understand (and can predict) how bat physiology is affected when they are infected by 
Pseudogymnoascus destructans, the fungus that causes WNS (Langwig et al., 2012, 2016, 
Johnson et al., 2014, Hayman et al., 2016, Haase et al., 2019). We suggest that more fully and 
precisely integrating the relationship between climate and winter survivorship in SDMs can 
enhance our ability to model winter bat distributions and understand how they may be impacted 
by WNS.  
 
Buckley et al. (2010, 2011) pioneered the concept of SDMs that integrate mechanistic 
understanding of how species respond physiologically to environmental conditions. They used 
correlative SDMs that fit observed locations of butterflies to empirically-derived numbers of 
degree-days required for each species’ growth and survival (Buckley et al., 2011). They found 
that species-specific degree-day measures outperformed a fixed degree-day metric in predicting 
the current distribution of each species. However, the difference in performance was modest, 
suggesting that more detailed models and/or additional predictors may be helpful in refining 
predicted distributions. These hybrid correlative-mechanistic models, which integrate a 
mechanistic understanding of how a species responds to its environment into a more traditional 
correlative framework, allow incorporation of additional landscape attributes to which the 
species is likely to respond alongside physiology (e.g., Martinez et al., 2015, McClure et al., 
2015).  
 
Here, we integrated a bioenergetic model of bat hibernation (Hayman et al., 2016, Haase et al., 
2019, Hranac et al. in prep) into a correlative species distribution modeling approach to predict 
winter distributions of western bat species. The bioenergetic model makes species-specific 
predictions of remaining fat stores and thus the likelihood of survival at the end of winter in a 
given location. Bringing bioenergetic model predictions into our analysis makes full use of what 
we know about bat hibernation physiology. We compiled bat winter occurrence data for five 
representative species from a variety of sources to inform our models. We used spatial 
predictions of winter survivorship from this mechanistic model as one predictor of bat 
occurrence probability across the areas encompassing our focal species’ known range extents. 
We included this along with other landscape attributes (e.g., topography, vegetation cover, karst 
and mines) to fit species distribution models using a boosted regression tree (BRT) approach 
(Elith et al., 2008). Our objective was to better understand the distribution of suitable bat 
hibernacula across the West to inform targeted monitoring and management practices and 
provide a baseline for estimating which species and populations may be hardest hit by the 
advance of WNS and climate change.   

Materials and Methods 
 
Winter occurrence data 
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We selected five focal species for our analyses: Corynorhinus townsendii1, Myotis californicus, 
Myotis lucifugus, Myotis velifer, and Perimyotis subflavus. These species were chosen because 
occurrence data and field-measured metabolic parameters were available for estimating 
survivorship, and because they were representative of variability in known distributions and 
habitat requirements among hibernating bats in the West, which we broadly define here as bats 
with all or a portion of their range extending west of the Mississippi River (Fig. 1; National Atlas 
of the United States, 2011).  

 
Figure 1. Current geographic range maps overlaid with winter presence locations available to inform 
species distribution models across the United States and Canada for five focal species: a) Corynorhinus 
townsendii, b) Myotis californicus, c) Myotis velifer, d) Myotis lucifugus, and e) Perimyotis subflavus. 
 
We compiled species occurrence data from multiple sources, including online databases of 
museum records (VertNet [NSF, 2013], Biodiversity Information Serving Our Nation [USGS, 
2012]), online repositories of vetted public and scientific observations (Global Biodiversity 
Information Facility [GBIF.org, 2018], Bat Population Database [USGS, 2003]), data associated 
with published literature (Ports & Bradley, 1996, Kuenzi et al., 1999, Dubois & Monson, 2007), 
data obtained from multiple Natural Heritage Programs (NHP; NatureServe, 2019, Montana 
                                                
1 Excluding isolated subspecies C. townsendii ingens and virginianus found in the Ozark and Appalachian 
Mountains 
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NHP, 2020), and data collected in our own field studies (unpublished data). We amassed 
thousands of occurrence records for each focal species, but the vast majority of records (>85%) 
were observed during summer or fall swarming, when bats are more readily observed. Even in 
bats that do not migrate seasonally, selection of hibernaculum microclimates and the 
surrounding habitat mosaic is expected to differ from selection of summer roosts (Smeraldo et 
al., 2018). Moreover, due to the sensitivity of hibernaculum locations to disturbance or 
exploitation, along with the difficulty of detecting torpid bats in hibernacula, winter bat location 
data were difficult to come by and limited in number (Table 2).  
 
We included only in-hand observations (i.e., no acoustic detections) since 1948 (to match the 
earliest availability of gridded climate data) with location error < 5 km. Because we were 
interested only in winter distributions associated with hibernaculum use, we filtered the compiled 
dataset to observations recorded during what we defined as winter in a spatially explicit manner. 
Using a model of winter duration informed by immergence and emergence observations at sites 
throughout North America (Hranac et al. in prep, SI), we estimated the start and end of winter 
hibernation at a given location (at 1-km resolution) by centering this duration estimate on the 
winter solstice, then selected only occurrence records within this timeframe. Lastly, we 
dissolved repeat observations (e.g., across multiple studies or survey dates) to a single record 
for a given site (with unique sites defined to the nearest thousandth of a degree of latitude and 
longitude).  
 
Predictor variables 
We identified landscape attributes that potentially influence hibernaculum selection from the 
published literature and our own knowledge (Table 1, Fig. 2). We selected publicly available 
datasets representing these predictors with sufficient spatial extent to encompass our compiled 
occurrence data (United States and Canada south of the Arctic Circle). Where multiple 
candidate datasets were available, we chose those with the highest spatial resolution and/or 
temporal range that best encompassed our occurrence data. The scale at which bats perceive 
and respond to landscape attributes may vary among species, attributes, and locales (see 
Bellamy et al., 2013, Ducci et al., 2015). We therefore derived predictor variables at multiple 
spatial scales (i.e., over different neighborhood sizes) where applicable for comparison. All 
predictors were derived and/or sampled using Google Earth Engine, a cloud-based computing 
platform supporting large-scale analysis on an extensive catalog of remotely sensed, 
climatological, and other geospatial datasets (Gorelick et al., 2017). 
 
Table 1. Summary of predictors considered in winter species distribution models for bat species 
Corynorhinus townsendii, Myotis californicus, Myotis lucifugus, Myotis velifer, and Perimyotis subflavus 
across the United States and Canada. 
Predictor Source data Resolution Neighborhood size 
Winter survivorship Haase et al., 2019, Hranac et al. in prep 1 km -- 
Distance to mines USGS MRDS1, BC MinFile2 1 km -- 
Mine density USGS MRDS, BC MinFile 1 km 25 km 
Karst Weary and Doctor, 2014, Salkeld and Walton, 2019 1 km -- 
Elevation ALOS3 Digital Surface Model v2 (Tadono et al., 2014) 30 m -- 
Ruggedness ALOS Digital Surface Model v2 (Tadono et al., 2014) 30 m 500 m, 5 km, 25 km, multiscale 
Topographic position ALOS Digital Surface Model v2 (Tadono et al., 2014) 30 m 500 m, 5 km, 25 km, multiscale 
Solar insolation ALOS Digital Surface Model v2, Theobald et al., 2015 30 m 500 m, 5 km, 25 km, multiscale 
Annual precipitation DayMet v3 (Thornton et al., 2019) 1 km -- 

Annual snow days 
MODIS4 Global Daily Snow Cover v6 (Hall et al., 
2016) 500 m -- 

Percent water 
JRC5 Yearly Water Classification v1 (Pekel et al., 
2016) 30 m 500 m, 5 km, 25 km, multiscale 

Groundwater depth Fan et al., 2013 1 km -- 
Percent tree cover MODIS Vegetation Continuous Fields (NASA6, 2019) 250 m 5 km, 25 km 
Night lights DMSP Radiance-Calibrated OLS7 v4 (NOAA8, 2016) 30 arcsec -- 
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1 United States Geological Survey Mineral Resources Data System; 2 British Columbia Mineral Inventory; 3 Advanced Land Observing 
Satellite; 4 Moderate Resolution Imaging Spectroradiometer; 5 Joint Research Centre; 6 National Aeronautics and Space Administration; 7 
Defense Meteorological Satellite Program-Operational Linescan System; 8 National Oceanic and Atmospheric Administration  
 

 
Figure 2. Maps of predictor variables used to fit winter species distribution models for bat species 
Corynorhinus townsendii, Myotis californicus, Myotis lucifugus, Myotis velifer, and Perimyotis subflavus 
across the United States and Canada (a - i) or, where continuous spatial data were not available for all 
provinces, across the U.S. and British Columbia (j - l). Data for karst and mines (j - l) was not available in 
other Canadian provinces, but this only impacts models for M. lucifugus as other focal species have either 
no, or only limited distribution in these provinces. In all panels, warmer, brighter colors represent higher 
values.  
 
Survivorship. We estimated species-specific, spatially explicit winter survivorship relative to the 
duration of winter. These estimates were based on an existing bioenergetic model of bat winter 
survivorship, recently updated and parameterized for western bat species. Full details are 
elsewhere (Haase et al., 2019, Hranac et al. in prep), but briefly, the model uses the 
hypothesized energetic requirements of bats in torpor to dynamically model torpor bouts for the 
duration of a predicted winter under specified hibernaculum conditions. For M. lucifugus, torpor 
consumes approximately eighty times less energy per unit time than euthermia, whereas the 
infrequent but periodic arousals to euthermic temperatures use the majority of energy stores, 
with each arousal consuming approximately 5% of total overwinter energetic costs (Thomas et 
al., 1990). In this model, ambient temperature and relative humidity were drivers of arousal 
frequency. We spatially interpolated the model results across the study extent to predict the fat 
mass expected to remain at the end of winter given mean ambient temperature and winter 
duration at each 1-km2 raster cell. Higher, positive predicted values are expected to correspond 
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to high survivorship, while low or negative values indicate areas where bats are unlikely to 
survive. Further details regarding the bioenergetic model and spatial parameters are described 
in the Supplemental Information. 
 
Topography. We derived topographic covariates from the global ALOS Digital Surface Model 
(DSM version 2.2; Tadono et al., 2014) at 30-m resolution, including elevation, topographic 
ruggedness, and topographic position. Topographic ruggedness was quantified as the standard 
deviation of elevation values within a given radius around each focal raster cell. Similarly, 
topographic position was quantified as the difference between the elevation of each focal raster 
cell and the mean of elevation values within a given radius, such that high values are associated 
with peaks and ridges and low values are associated with canyon bottoms (e.g., Guisan et al., 
1999, Dickson & Beier, 2007). We also extracted Continuous Heat-Insolation Load Index, a 
surrogate for effects of solar insolation and topographic shading on evapotranspiration, also 
derived from the global ALOS DSM at 90-m resolution by Theobald et al. (2015). We used a 
moving window approach to derive topographic ruggedness and position at three spatial scales 
(diameter = 500 m, 5 km, 25 km), then the resulting values were averaged to create ‘multiscale’ 
metrics. We took the focal mean of solar insolation values over these multiple scales as well.  
 
Surface attributes. We derived percent tree cover from the Terra MODIS Vegetation Continuous 
Fields product, which estimates sub-pixel-level surface vegetation cover globally, including 
percent tree cover, on an annual basis (250-m resolution; NASA, 2019). Because data were not 
available for the entire temporal range of our occurrence data, we used data for the most recent 
year available (2015). We estimated percent tree cover at two aggregated scales (diameter = 5 
km, 25 km). We used global nighttime lights imagery from the Defense Meteorological Program 
Operational Line-Scan System (Radiance-Calibrated, V4) as a proxy for relative intensity of 
human development (30-arcsec resolution; NOAA, 2016). We estimated availability of surface 
water based on the Joint Research Center Yearly Water Classification History (V1), which maps 
the location and seasonality of surface water from Landsat 5, 7, and 8 imagery (30-m resolution; 
Pekel et al., 2016). We estimated the percent cover of seasonal or permanent surface water at 
three spatial scales (diameter = 500 m, 5 km, 25 km), focusing on the most recent year for 
which data were available (2015) because the data do not span the entire temporal range of our 
occurrence dataset. We estimated the frequency of snow cover based on the MODIS Global 
Daily Snow Cover product (V6; Hall et al., 2016), which estimates percent snow cover of each 
500-m pixel on a daily basis. We counted the average number of days per year with at least 
10% snow cover over the 5-year period from July, 2013 to June, 2018. We quantified 
precipitation using the DayMet dataset (V3; Thornton et al., 2019), which provides gridded daily 
precipitation data at 1-km resolution. We estimated mean annual total precipitation by summing 
daily values annually then averaging the most recent five years available (2013-2018) for 
consistency with the temporal range of other available predictor data.  
 
Below-ground attributes. To represent potential availability of karst features that may provide 
suitable hibernacula, we relied on a map of karst and pseudokarst features across the United 
States produced by Weary and Doctor (2014) derived from State geological survey maps and 
USGS integrated geologic map databases (1:24,000 to 1:500,000 resolution). We merged this 
with an equivalent dataset for British Columbia provided by the Ministry of Forests, Lands, 
Natural Resource Operations and Rural Development (1:250,000 resolution) (Forest Analysis 
and Inventory, 2019). We did not differentiate among karst types, and instead created a simple 
binary indicator of karst presence vs. absence in raster format (1-km resolution). We also 
estimated availability of mines as potential hibernacula, using mine site locations available from 
the USGS Prospect- and Mine-Related Features database (v4, available for all but northeastern 
states; Horton & San Juan, 2019) and the Mineral Resources Data System (MRDS, used for 
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northeastern states; USGS, 2016), and from the MINFILE Production Database for British 
Columbia (BC Geological Survey, 2019). We included only mineral resource sites classified as 
mines (Mine-Related Features and MRDS) or as producing at one time (MINFILE). We derived 
two measures of mine availability: distance to the nearest mine and density of mines within 50 
km of each focal raster cell (1-km resolution), calculated using a Gaussian kernel density 
function (sigma = 25 km). Karst and mine data were not available for other Canadian provinces; 
these predictors were not included in models for M. lucifugus, whose range spans these areas. 
Finally, we estimated groundwater depth from a global water table depth model that gap-filled 
point observations with a mechanistic groundwater model (1-km resolution; Fan et al., 2013).  
 
Model fitting 
We estimated species-specific relative probability of occurrence during winter using boosted 
regression trees (BRT; De’Ath, 2007, Elith et al., 2008). A BRT (a.k.a. gradient boosting 
machine or stochastic gradient boosting) is an ensemble approach that combines regression 
trees, which relate a response to predictors by recursive binary splits of the data, and boosting, 
in which inference is drawn from the relative strength of many possible models rather than fitting 
a single parsimonious model. This method offers advantages over more traditional linear 
regression approaches in that a variety of response data and model forms can be 
accommodated (e.g., Gaussian, binomial, Poisson); different types of predictor variables (e.g., 
continuous, ordinal, categorical) can be included with no need for transformation or outlier 
removal; nonlinear relationships are easily captured; and interactions between predictors are 
handled automatically. Furthermore, overfitting is well-controlled through the use of cross-
validation as BRT models are ‘grown’ (Elith et al., 2006, 2008). Importantly, a number of studies 
(e.g., Elith et al., 2006, Wisz et al., 2008, Oppel et al., 2012, Maiorano et al., 2013) have shown 
strong BRT predictive performance relative to other SDM approaches (e.g., generalized linear 
models, generalized additive models, climatic envelope models, maximum entropy).  
 
We follow the approach detailed by Elith et al. (2008) for application of BRT to species 
distribution modeling. One key difference in our application is that we make use of presence-
only data rather than presence-absence data. Use of presence-only data, in which sites where 
the focal species was absent are not known with certainty, requires a shift in model assumptions 
and inference. Presence-absence models compare landscape attributes of sites at which the 
species was known to be present and absent to estimate the absolute probability of occurrence 
at any unobserved site given its climate and/or landscape characteristics (Guisan & 
Zimmerman, 2000, Manly et al., 2007). Without absence data, attributes of presence locations 
must instead be compared to randomly-sampled ‘background’ (a.k.a. ‘pseudo-absence’) 
locations (e.g., Ferrier et al., 2002). In this case, presence is assessed relative to availability and 
the species’ absence at sampled background locations is not guaranteed. This shift in 
comparison fundamentally alters the inferences that can be made from the model: we cannot 
estimate the absolute probability of focal species occurrence (i.e., 80% probability of occurrence 
at a given site), but we can estimate, or rank, the relative probability of occurrence (Keating & 
Cherry, 2004; but see Phillips & Elith, 2011, Royle et al., 2012).  
 
We sampled ‘background’ locations from extents that were broadly inclusive of each species’ 
known range in an effort to sufficiently capture the environmental conditions limiting their 
distributions (western U.S. and Canada for C. townsendii, M. californicus; U.S. and Canada for 
M. lucifugus; U.S. for M. velifer, P. subflavus [Razgour et al., 2016]). Because bats were more 
likely to have been observed in locations already known to harbor bats and that are more 
accessible (e.g., closer to population centers, accessible by roads, and in less rugged 
topography; Graham et al., 2004), we generated background points so as to replicate and thus 
control for this inherent spatial bias (after Hertzog et al., 2014). We first created a bias grid 
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based on the kernel density of occurrence locations (Venables, 2002) using the MASS package 
for R, then generated background points with probability dictated by occurrence density (e.g., 
Fig. 3). We generated three background points for every occurrence point as a balance between 
achieving coverage of available habitat and not swamping the presence locations or artificially 
inflating sample size. Finally, we sampled all candidate predictor variables at each presence 
and background location. 
 

 
Figure 3. To correct for bias in species occurrence data used to fit winter species distribution models for 
bat species Corynorhinus townsendii, Myotis californicus, Myotis lucifugus, Myotis velifer, and Perimyotis 
subflavus across the United States and Canada, a) presence locations were used to generate a bias grid 
(i.e., kernel density surface), which was in turn used to b) probabilistically generate background locations 
that were subject to the same spatial patterns of bias. This example illustrates these steps for C. 
townsendii.  
 
To identify the most appropriate scale for each predictor (i.e., the scale at which habitat 
selection was most evident), we first fit univariate generalized additive models (GAM; Yee & 
Mitchell, 1991) for each predictor. We chose GAM for this preliminary predictor selection step to 
not constrain the form of the response. We selected the best performing scale for each predictor 
based on a comparison of Akaike’s Information Criterion (AIC) scores across each scale at 
which the predictor was sampled. We then assessed pairwise correlations and variance inflation 
factors across the resulting set of predictors and excluded those causing standard thresholds of 
0.7 and 4.0, respectively, to be exceeded to avoid multicollinearity (Belsley, 1991, Booth et al., 
1994). We also excluded mine density from further consideration due to its poorer AIC-based 
performance across all focal species compared to distance from mines.  
 
We fit and calibrated each BRT model using the stepwise cross-validation process detailed by 
Elith et al. (2008) and accompanying R scripts (Elith et al., 2008 Appendix S3). We adjusted the 
model learning rate to ensure that a minimum of 1000 trees were fit, then calibrated the tree 
complexity (range: 3-5) and bag fraction (range: 0.5-0.7) to minimize deviance. We tested for 
benefits of dropping uninformative model terms based on estimated reduction in deviance. We 
then used this ‘optimized’ model to assess the relative contribution of each predictor, plot the 
relationship between each predictor and relative occurrence probability, and evaluate model 
performance. We evaluated the model’s fit to the training data (iteratively partitioned in the 
cross-validation process) based on the mean proportion of deviance explained in each cross-
validation iteration, and assessed predictive performance based on the predictive deviance 
(Elith et al., 2008). Because our models were fit using presence-background data, we do not 
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follow Elith et al. (2008) in reporting cross-validated area under the receiver operating curve 
(AUC), as use of this metric to evaluate presence-background models is flawed by 
‘contamination’ of background sites with unobserved presence (Boyce et al., 2002, Jimenez-
Valverde, 2012, Escobar, 2018). As a final modeling step, we applied the optimized model to 
predictor values in each 1-km cell of the extent of interest for each species to predict and map 
relative probability of occurrence (Elith et al., 2008 Appendix S3). We summarized the percentile 
ranks of occurrence probability values predicted for presence and background locations as an 
additional assessment of predictive performance.  All model fitting and prediction were 
conducted in R (version 3.4.1; R Core Team, 2019). 
 
Results 
 
After filtering the compiled dataset to unique winter locations, an average of 240 presence 
locations per species (range: 72-450) were available to fit SDMs (Table 2). Of the neighborhood 
sizes compared, moderate to large neighborhoods (5-km, 25-km diameter) tended to capture 
the scale at which bats responded to landscape attributes better than a small neighborhood 
(500-m), but scale of selection for each attribute varied among species (Table A1). Sampling 
landscape predictors at finer resolution (1-km) tended to produce stronger relationships with bat 
occurrence than coarse-resolution sampling (10-km), and the tendency for each predictor to 
perform best at either a fine or coarse sampling resolution was fairly consistent across species 
(Table A1).  
 
Table 2. Occurrence data available to inform winter species distribution models for five bat species 
across the United States and Canada after filtering to unique winter locations. Total records include all 
raw observations compiled from multiple sources. Winter records were selected based on a spatially 
explicit model of winter duration informed by bat immergence and emergence observations (Hranac et al. 
in prep, SI). Unique records were counted after dissolving repeat winter observations (e.g., across 
multiple studies or survey dates) at a given location. 
Species Total Winter Unique 
Corynorhinus townsendii 8959 1637 355 
Myotis californicus 5920 596 89 
Myotis lucifugus 14946 2113 442 
Myotis velifer 11152 1688 72 
Perimyotis subflavus 7024 2722 284 
 
Optimal BRT parameters varied among species, but higher tree complexity (4-5) and higher bag 
fractions (0.6-0.7) were favored (Table 3). Model performance was fairly similar across species, 
with a mean of 54.7-74.4% of the total deviance in the training data explained and predictive 
deviance of 0.753-0.881. The model for M. californicus had the best fit to the data (74.4% 
deviance explained), while the model for C. townsendii had the best predictive performance 
(0.753  +/- 0.027 predictive deviance). The model for P. subflavus had the poorest performance 
in terms of both fit (54.7% deviance explained) and predictive performance (0.881 +/- 0.027 
predictive deviance). 
 
Table 3. Final boosted regression tree (BRT) model parameters and performance metrics for winter 
species distribution models for bat species Corynorhinus townsendii, Myotis californicus, Myotis lucifugus, 
Myotis velifer, and Perimyotis subflavus across the United States and Canada. 

Species 
Tree 

complexity 
Bag 

 fraction 
N  

trees 

Mean  
total  

deviance 

Mean 
 residual 

 deviance 

Mean  
deviance 
explained 

Predictive 
 deviance  

(+/- SE) 

Mean  
predicted 
percentile 

(presence) 

Mean  
predicted 
percentile 

(background) 
C. townsendii 5 0.7 3400 1.122 0.391 65.2 0.753 +/- 0.026 89.4 53.6 
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M. californicus 4 0.7 1850 1.106 0.283 74.4 0.782 +/- 0.072 94.6 56.8 
M. lucifugus 5 0.6 4500 1.141 0.409 64.2 0.836 +/- 0.024 80.3 43.4 
M. velifer 3 0.6 1800 1.125 0.318 71.7 0.759 +/- 0.041 83.7 38.7 
P. subflavus 5 0.5 2300 1.126 0.51 54.7 0.881 +/- 0.027 88.0 58.1 
 
We found considerable interspecific differences in the relative influence of each predictor on 
occurrence probability (Fig. 4). Ruggedness, topographic position, and percent tree cover were 
among the most consistently strong contributors, based on mean relative influence across 
species (11.64% +/- 1.96 SD, 9.62% +/- 4.14 SD, and 9.62% +/- 2.31 SD, respectively). Winter 
survivorship, on average, also had high influence, but its influence varied considerably across 
species (9.58% +/- 6.67 SD). Karst had the lowest influence overall (mean 4.6% +/- 3.31 SD, 
though it was not considered in the M. lucifugus model). 
 

 
Figure 4. Final predictor influences in boosted regression tree (BRT) models estimating winter species 
distributions of bat species Corynorhinus. townsendii, Myotis. californicus, Myotis. lucifugus, Myotis. 
velifer, and Perimyotis. subflavus across the United States and Canada. Brighter colors indicate higher 
influence; predictors that were dropped from a given model are shown in gray. Variables are ordered by 
their average influence across species (decreasing left to right).  
 
Consistency in a predictor’s degree of influence across species did not necessarily correspond 
to similar relationships between that predictor and relative occurrence probability among 
species (Fig. 5). The effect of ruggedness was fairly consistent among species, with low relative 
occurrence probability predicted in very flat, open areas (very low ruggedness). M. velifer, and 
particularly P. subflavus appeared to favor low topographic positions (i.e., canyon bottoms); M. 
lucifugus also showed this pattern, in addition to an avoidance of open, flat topography 
(topographic position ~ 0). Relationships with solar insolation and elevation varied widely. For 
example, C. townsendii showed some preference for low elevations with high insolation, while 
M. velifer selected for low elevation, low insolation sites and P. subflavus preferred higher 
elevations (elevation was excluded from models for M. californicus and M. lucifugus due to high 
collinearity with other predictors). Occurrence probability generally increased with predicted 
winter survivorship, as expected, particularly in species for which survivorship had strong 
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influence (M. californicus, M. lucifugus, P. subflavus). Similarly, occurrence probability was 
generally higher with greater tree cover and fewer days of snow annually. The shape and 
direction of responses to groundwater depth, surface water, and annual precipitation (excluded 
from C. townsendii and M. californicus models due to collinearity) were highly variable. Before 
correcting for bias in presence locations, night lights were a strong predictor of most species’ 
occurrence, but this relationship primarily reflected the distribution of sampling effort, not 
distribution of the species of interest. Still, even after correcting for sampling bias closer to 
human habitation, all species had very low relative probability of occurrence where night light 
intensity was lowest (darkest). However, in all species the rest of the response curve is quite 
flat, indicating minimal lingering effect of night lights in the models. Similarly, occurrence 
probability tended to be highest very close to mines, but beyond a minimum distance, the 
presence of mines had little effect on species distributions. Three species showed evidence of a 
preference for karst features (karst could not be considered for M. lucifugus due to missing karst 
data in portions of the species’ range).  
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Figure 5. Fitted probability of occurrence functions for each predictor from boosted regression tree (BRT) 
models estimating winter species distributions of bat species Corynorhinus townsendii, Myotis 
californicus, Myotis lucifugus, Myotis velifer, and Perimyotis subflavus in the United States and Canada. 
Variables are ordered by their average influence across species; percentages indicate the relative 
influence of each predictor in the model. Rug plots (i.e., tic marks) indicate the deciles of the distribution 
of predictor values represented in the full presence/background location dataset. 
 
We observed high relative probability of occurrence at presence locations compared to 
background locations, as expected (Table 3, Figs. 6-7, Figs. A1-A4). The mean percentile rank 
of predicted occurrence probability at presence locations ranged from 80.3 (M. lucifugus, M. 
velifer) to 94.6 (M. californicus), 29.9 - 45 percentile points higher than the mean values 
predicted for background locations. In some cases, conspicuous exclusions and inclusions 
evident in existing species range extents (e.g., exclusion of Great Plains for C. townsendii, 
exclusion of Texas panhandle and mid-Atlantic coast for M. lucifugus, inclusion of Great Salt 
Lake area for M. californicus, inclusion of Arizona’s Sky Islands for M. velifer) are mirrored by 
low and high predicted probabilities, respectively. Often, areas outside the focal species’ known 
ranges have high predicted occurrence probability, reflecting the similarity of landscape 
attributes in these areas to those of known presence locations. Conversely, areas with low 
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occurrence probability often occur within the species’ known ranges, highlighting the 
generalized nature of simple polygon range extent estimates. 
 

 
Figure 6. Predicted relative probability of occurrence of Corynorhinus townsendii (predictive deviance = 
0.753 +/- 0.026) across the western U.S. and British Columbia. The species’ current range extent 
(turquoise outline) and winter occurrence locations used to fit the model are overlaid (turquoise points). 
Occurrence probability is scaled using a quantile symbolization to reflect the fact that predictions 
represent relative occurrence probability; while absolute values cannot be reliably interpreted relative to 
one another, percentile ranking is permitted (i.e., yellow areas of the maps represent the 10% by area of 
the mapped landscape with the highest occurrence probability, regardless of the underlying distribution of 
values). Predictive maps for other species are included in the Appendix (Figures A1-A4). 
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Figure 7. Distributions of predicted relative probability of occurrence of a) Corynorhinus townsendii, b) 
Myotis californicus, c) Myotis lucifugus, d) Myotis velifer, and e) Perimyotis subflavus in the United States 
and Canada at presence locations (green) compared to background locations (pink).  
 
Discussion 
This study provides insights into the drivers and spatial patterns of bat hibernaculum selection in 
the West - a topic that is poorly understood, yet critical for advancing bat research, 
conservation, and management of WNS impacts. We demonstrate that the nature and scale of 
bats’ responses to the landscape when selecting hibernacula varies among species and across 
different landscape attributes. Our results point to ranges of landscape attribute values where 
each focal species may be most likely to hibernate and highlight the importance of protecting 
mine features as hibernacula for multiple species. Importantly, our findings indicate that 
topographic attributes are important predictors of hibernaculum selection, suggesting that bat 
winter occurrence can, in part, be predicted from readily mapped above-ground features. We 
also found that our mechanistic estimate of winter survivorship contributed to prediction of 
winter occurrence probability for all focal species; in one case (M. californicus), it was by far the 
strongest predictor.  
 
Because so little is known about how bats choose winter hibernacula and bat winter 
distributions in the West have never been modeled, we felt it was important to use methods that 
allow for flexible, nonlinear relationships between predictors and relative probability of 
occurrence. Peaks in our modeled response curves may help to identify ranges of preferred 
attributes (e.g., preferred elevation bands or density of forest cover). Flat portions of response 
curves may indicate an absence of selection (e.g., beyond a threshold distance, bats don’t care 
how far they are from the nearest mine) or they may indicate ranges of attribute values where 
we simply have no data (see wide gaps in decile rug plots on response curves, Fig. 5). Our use 
of bias correction when generating background locations (Hertzog et al., 2014) impacted model 
results and was important given the opportunistic sampling of winter bat locations reflected in 
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the public databases we relied on. Prior to bias correction, night lights were a strong predictor of 
most species’ occurrence probability and suggested a preference for more intense night lights, 
but this uncorrected result would have reflected the distribution of sampling effort rather than the 
ecology of the focal species.  
 
Although topographic attributes were often strong predictors of hibernaculum selection, 
preferred topographic characteristics (e.g., high versus low topographic position) varied among 
species. Karst presence was a weak predictor, perhaps because we did not consider differential 
selection among different types or depths of karst, or because the available map of karst 
features does not necessarily indicate where karst features are accessible to bats via caves or 
crevices. Mines were clearly important features for several species, and their relative influence 
appeared to scale sensibly with species’ tendency to use mines: influence was lowest for M. 
velifer (Cave myotis), which is more frequently found in caves. Our models suggest the 
importance of generating and making public spatial karst and mine datasets in other Canadian 
provinces to better predict occurrence for M. lucifugus and other species frequently found in 
mines in these regions. Our results support the preservation of western mines as critical winter 
habitat for which there are significant opportunities to enhance existing protected area status 
(Weller et al., 2018). 
 
Our mechanistic winter survivorship estimate (Hranac et al. in prep) contributed to all species’ 
predicted occurrence, but to varying degrees. The direction of the relationship between 
survivorship and relative occurrence probability was positive overall, as expected, but its 
strength varied among species. This complex, model-based estimate of survivorship is 
unavoidably subject to uncertainty, but it has greater direct relevance to winter bat distributions 
than generic climate metrics (e.g., mean surface temperature) with no mechanistic link to bat 
physiology. Future quantitative comparisons between predictions from this mechanistic predictor 
and those generated using standard, off-the-shelf climate predictors may be of interest. We also 
see worthwhile opportunities to continue honing this survivorship model as additional empirical 
data for parameterization become available (e.g., for estimating species-specific, spatially 
explicit winter duration, better estimating subterranean temperatures and humidity experienced 
by hibernating bats and how they respond physiologically). 

 
The maps of relative occurrence probability presented here (Figs. 6, A1-A4) should help to 
guide future work to survey and monitor western bat populations, inform future conservation 
efforts, and provide a baseline for understanding potential impacts of future change, namely the 
spread of WNS through the West and climate change. These maps should be interpreted with 
care outside the known range of each species, as places with predictor values similar to those 
currently occupied will be highlighted but other limits on species distributions (e.g., historic 
spread processes, species interactions) may exist that were not captured here. Occurrence 
probability of generalist species with broad geographic ranges is particularly difficult to model 
effectively (Hernandez et al., 2006, Razgour et al., 2016). Predictive maps for such species 
(e.g., M. lucifugus, P. subflavus), which have lower predictive performance, should be 
interpreted with caution. Still, we expect that these maps can be useful for considering the 
potential occurrence of the focal species in areas predicted to be suitable beyond their coarsely 
mapped range extents, which are likely inaccurate or out of date in some areas. Places that are 
predicted to have low occurrence probability may in fact be unlikely to support hibernacula, or 
they may simply have attributes not well represented in our presence data. These areas should 
be considered in the context of existing knowledge of the focal species and their hibernation 
patterns: Do these places lack karst or mine features, topographic relief, or trees to shelter 
hibernating bats? Or are they simply remote and characterized by rare landscape features that 
were underrepresented in our sample? It is also important to recognize that mapped occurrence 
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probabilities are relative values. We cannot estimate absolute occurrence probability from the 
available data, and our estimates may not be strictly proportional to absolute probability. The 
predicted values should be interpreted as rank probabilities, as reflected by the quantile 
symbology used in our maps (Fig. 6, Figs. A1-A4).  
 
These are complex models based on relatively small sample sizes, so uncertainty remains and 
portions of the predictor space are undersampled. We may also be missing key predictors that 
we simply don’t yet understand to be important for hibernaculum selection or cannot map 
continuously with currently available spatial data. Future efforts to improve on these models 
would benefit from additional winter location data (particularly for species other than C. 
townsendii and M. lucifugus) in novel locations. Future survey efforts could perhaps target 
places predicted to be highly suitable but where no occurrence data exist (e.g., M. californicus in 
the Great Salt Lake region, M. velifer in south Texas and northeast Arizona), or places with 
landscape characteristics not well represented in the current sample. Absence data would 
improve the robustness of distribution models considerably (e.g., in comprehensive survey and 
monitoring efforts, which species were searched for but not found?), although reliable absences 
would be extremely difficult to obtain (due to low detection probabilities that vary with survey 
techniques and site characteristics). 
 
Winter hibernation is clearly a critical part of temperate bats’ annual cycle, yet it is largely a 
black box for many species; we have only limited knowledge of where these widely-distributed 
species go for approximately half the year or what drives them there. This lack of understanding 
of the ecology of these species hinders conservation and management responses to ongoing 
and future threats to their persistence. Insights from SDMs are valuable for locating, studying, 
and managing species with low detectability (Razgour et al., 2016). SDMs may also help to 
define winter critical habitat for bats, as they have for other species (Heinrichs et al., 2010, 
Brotons et al., 2004). Unlike the East, there has simply not been a ‘where’ on which to focus 
conservation policy in the West; models like ours could begin to fill this gap.  
 
Our study also paves the way for assessment of the potential impacts of WNS and climate 
change on western bats, as well as their interactions. Prediction of species distributions under 
altered spatial patterns of winter survivorship in the presence of P. destructans and future 
climate conditions may help to identify species and places most threatened by these stressors. 
We expect these predictions to have important implications for bat conservation and 
management in the West, such as informing placement of passive acoustic detectors for 
monitoring or understanding the distribution of at-risk and stable hibernacula across federal, 
state, and private lands to guide engagement strategies for conservation. 
 

Data Availability Statement 
Original bat occurrence spatial data used in this analysis cannot be made available because 
they were obtained from third parties. While some of the data are available from public 
repositories and published literature (see Methods), others are protected by data sharing 
agreements due to the sensitive nature of hibernaculum location information to protect these 
sites from vandalism or exploitation. However, we make our complete analytical dataset, 
stripped of spatial identifiers, available via Dryad (link TBD). This includes all sampled predictor 
values and predicted relative occurrence probabilities for all bat presence points and 
accompanying bias-corrected background points. 
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Appendix 
 
Table A1. Final predictor sets and their relative influences in boosted regression tree (BRT) models used 
to estimate winter species distributions of five focal bat species across the United States and Canada, 
including a) Corynorhinus townsendii, b) Myotis californicus, c) Myotis lucifugus, d) Myotis velifer, and e) 
Perimyotis subflavus. 
a) Corynorhinus townsendii    
Variable Neighborhood size Sample resolution Relative influence 
Distance to mine -- 10 km 15.32 
Elevation -- 10 km 11.94 
Percent tree cover 5 km 1 km 10.75 
Ruggedness 500 m 1 km 10.65 
Annual snow days -- 1 km 9.34 
Groundwater depth -- 10 km 8.13 
Night lights -- 1 km 7.92 
Solar insolation Multiscale 1 km 7.73 
Karst -- 1 km 6.74 
Topographic position 5 km 1 km 5.61 
Winter survivorship -- 1 km 4.66 
Percent water 500 m 1 km 1.2 
 
b) Myotis californicus    
Variable Neighborhood size Sample resolution Relative influence 
Winter survivorship -- 10 km 20.39 
Distance to mine -- 1 km 12.13 
Night lights -- 1 km 10.33 
Percent tree cover 5 km 10 km 9.88 
Annual snow days -- 1 km 9.53 
Topographic position Multiscale 10 km 8.83 
Ruggedness 25 km 1 km 8.68 
Solar insolation 5 km 1 km 8.1 
Percent water 25 km 10 km 7.53 
Groundwater depth -- 1 km 4.6 
 
c) Myotis lucifugus    
Variable Neighborhood size Sample resolution Relative influence 
Topographic position Multiscale 1 km 16.22 
Ruggedness Multiscale 1 km 13.68 
Solar insolation 25 km 10 km 11.36 
Night lights -- 1 km 11.15 
Winter survivorship -- 10 km 11.11 
Annual precipitation -- 10 km 10.78 
Percent water  5 km 1 km 8.73 
Percent tree cover 25 km 1 km 8.54 
Groundwater depth -- 10 km 8.44 
 
d) Myotis velifer    
Variable Neighborhood size Sample resolution Relative influence 
Elevation -- 10 km 16.57 
Ruggedness 500 m 10 km 12.48 
Percent tree cover 25 km 1 km 12.46 
Annual precipitation -- 10 km 11.71 
Solar insolation 25 km 1 km 9.61 
Percent water  25 km 1 km 7.9 
Topographic position 500 m 1 km 6.91 
Distance to mine -- 10 km 5.51 
Groundwater depth -- 10 km 5.24 
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Karst -- 1 km 4.44 
Winter survivorship -- 1 km 3.99 
Night lights -- 10 km 3.17 
 
e) Perimyotis subflavus    
Variable Neighborhood size Sample resolution Relative influence 
Ruggedness 5 km 1 km 12.61 
Night lights -- 1 km 12.54 
Topographic position 25 km 1 km 10.6 
Groundwater depth -- 10 km 8.42 
Annual precipitation -- 1 km 8.26 
Winter survivorship -- 10 km 7.77 
Elevation -- 10 km 7.74 
Distance to mine -- 10 km 7.37 
Karst -- 1 km 7.28 
Percent water  5 km 1 km 7.05 
Percent tree cover 5 km 1 km 6.4 
Annual snow days -- 10 km 3.97 
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Figure A1. Predicted relative probability of occurrence of Myotis californicus (predictive 
deviance = 0.782 +/- 0.072) across the western U.S. and British Columbia. The species’ current 
range extent (turquoise outline) and winter occurrence locations used to fit the model are 
overlaid (turquoise points).  
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Figure A2. Predicted relative probability of occurrence of Myotis lucifugus (predictive deviance 
= 0.836 +/- 0.024) across the U.S. and Canada (below the Arctic Circle). The species’ current 
range extent (turquoise outline) and winter occurrence locations used to fit the model are 
overlaid (turquoise points).  
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Figure A3. Predicted relative probability of occurrence of Myotis velifer (predictive deviance = 
0.759 +/- 0.041) across the southwestern U.S. The species’ current range extent (turquoise 
outline) and winter occurrence locations used to fit the model are overlaid (turquoise points).  
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Figure A4. Predicted relative probability of occurrence of Perimyotis subflavus (predictive 
deviance = 0.881 +/- 0.027) across the eastern and central U.S. and eastern Canada. The 
species’ current range extent (turquoise outline) and winter occurrence locations used to fit the 
model are overlaid (turquoise points).  
 


