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Abstract
Caiman yacare is considered one of the top predators in the Amazon basin, and understanding pollutant distribution within 
its tissues may help its sustainable management. As a top predator, C. yacare should have the highest mercury concentrations, 
but has lower Hg concentrations than carnivorous fish (Rivera et al. 2016), which are part of their diet. We compared total 
Hg among liver, kidney, fat, and muscle of C. yacare, and whether trends in the distribution of Hg among tissues were like 
other crocodilians, aquatic birds, omnivorous, and carnivorous fish. Fat had the lowest concentrations (0.025 ± 0.03 mg  kg−1) 
followed by muscle (0.15 ± 0.06 mg  kg−1), kidney (0.57 ± 0.30 mg  kg−1) and liver (1.81 ± 0.80 mg  kg−1). Such preferential 
accumulation makes C. yacare meat a safer alternative for human consumption than carnivorous fish. The relation between 
Hg accumulation in liver and muscle is highest in crocodilians, which has evolutive and environmental implications.
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Mercury contamintion has been a growing concern for a 
long time in tropical regions such as the Amazon basin 
(Nevado 2010; Vieira 2018). Riparian populations for whom 
fisheries are their most significant sources of protein are par-
ticularly exposed to such contaminant (Maurice-Bourgoin 
et al. 2000; Barbieri et al. 2009). Mercury in the Amazon 

is naturally abundant in the soil, and rivers (Kasper et al. 
2018). The soil erosion, together with artisanal gold min-
ing, installations of hydroelectric dams and deforestation, 
are important sources of inorganic mercury forms  (Hg0 and 
 Hg2+) (Veiga and Hinton 2002; Magarelli and Fostier 2005).

Mercury concentrations in the biota of the Amazon are 
generally high (Pouilly et al. 2004; Schneider et al. 2009; 
Souza-Araujo et al. 2015). Mercury in its organic form meth-
ylmercury (MeHg) is easily bioaccumulated and biomagni-
fied through the food chain (Molina et al. 2010; Pouilly et al. 
2013) and it is the most toxic form of mercury (Clarkson 
and Magos 2006). Thus, long-lived, larger organisms and 
those species higher in the food chain tend to have a higher 
concentration of mercury (Silva et al. 2005; Pouilly et al. 
2013). Consequently, the top predator may have the highest 
mercury concentrations in its tissues (Rumbold et al. 2002). 
In addition to fish, human population living along the river 
also consume meat from crocodilians, which may be consid-
ered an added risk of exposure to mercury. Surprisingly, a 
risk analysis for alligators in the Brazilian Amazon suggest 
that its consumption does not represent a significant risk 
(Correia et al. 2014).

Caiman yacare (Yacare from now on) is considered one 
of the top predators in the Amazon basin (Sergio et al. 
2014). Adults can reach ~ 2.5 m. Amazonian crocodilians’ 
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diet varies with ages, sex, season, habitat, year, and avail-
ability of prey (Santos et al. 1996; Grigg and Kirshner 
2015). Yacare position in the trophic chain should result 
in high concentrations of mercury as seen for other species 
of South American crocodiles (Vieira et al. 2011; Schnei-
der et al. 2015). However, Rivera et al. (2016) reported 
mercury concentration in the muscle tissue of the Yacare 
below the levels seen in carnivorous fish, which are part 
of the Yacare diet. Rivera et al. findings are against our 
general understanding of mercury biomagnification in 
the food web and mercury accumulation in crocodiles as 
top predators (Duvall and Barron 2000; Khan and Tansel 
2000). It has been shown that mercury could be stored 
preferentially in different tissues of crocodilians (Rumbold 
et al. 2002; Buenfil-Rojas et al. 2018), which may explain 
Rivera’s findings.

The population of Yacare is commercially exploited in 
Bolivia since 1999 under the National Program of Con-
servation and Sustainable trading of the Caiman yacare 
(MMAyA 2009; CIPTA and WCS 2010). For indigenous 
communities, Yacare and other caiman species consti-
tute an essential source of meat for income and human 
consumption (Figueiredo et al. 2015). In this study, we 
investigated mercury concentrations in different tissues of 
Yacare, particularly those that could be a potential expo-
sure pathway for Tacana people on the seasonal harvest, 
such as fat which they use for consumption as medicine, 
and the tail muscle since it is used for sale and for local 
consumption. We also analyzed the available published 
data to evaluate if the tendencies observed on mercury 
accumulation in Yacare are exclusive of such species or 
group of organisms.

Materials and Methods

Samples were collected at the Colorado-Majal lakes system 
within the Cachichira community (Fig. 1), which is part of 
the Tacana indigenous territory (“Tierra Comunitaria de 
Origen I”, TCO Tacana I from now on). The TCO Tacana I 
is located in the north of La Paz Department, bounded on the 
east by the Beni River to the southwest with Madidi National 
Park and the northwest by the Undumo River.

The Beni river is a dynamic hydrological system with a 
large number of small and medium-sized oxbow lakes. Col-
orado-Majal lakes system is part of the floodplain of Beni 
river and is the same area which have been studied by Rivera 
et al. (2016). Yacare Caiman (Caiman yacare), Black Cai-
man (Melanosuchus niger), and river turtles such as Yellow-
Spotted (Podocnemis unifilis) are common in the area.

Samples were collected in October 2017 during com-
mercial harvest. The total length (TL) of harvested speci-
mens ranged between 177 and 220 cm, and the weight was 
between 24 and 46 kg. Such measures correspond to those 
of sizeable male adult individuals, since the harvest pro-
gram called Asociación Matusha Aidha (2016) and MMAyA 
(2009) only allows to kill males > 180 cm of TL which is 
equivalent to 90 cm of head-body length (HBL), correspond-
ing to class IV, which are those individuals that correspond 
to measurements previously mentioned.

Immediately after Yacares were killed (n = 7), 28 samples 
were taken of four different tissues (liver, fat, muscle, and 
kidney). The samples were obtained using plastic knives one 
for each tissue. At least 1 g of each type of tissue was col-
lected and placed into cryo-tubes and immediately frozen in 
liquid nitrogen for their conservation until analysis. Samples 

Fig. 1  Sampling location inside 
Cachichira community (TCO 
Tacana I) area, upper Amazon
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were analyzed using a variation of the method described by 
Rivera et al. (2016) (details in the supplementary materials).

Data were evaluated for normality with the Shapiro-Wilk 
test. Kruskal-Wallis one-way analysis of variance test was 
used to compare Total mercury (THg from now on) among 
tissues and a Turkey post-hoc analysis. We also evaluated 
the correlation of THg concentration between each kind of 
tissue (liver, muscle, fat and kidney) with a Spearman’s non-
parametrical correlation test  (rs). Mercury concentration in 
Yacare organs was compared with that of birds, carnivo-
rous and omnivorous fish, and other species of crocodilians 
obtained from the published literature (Table S1). We used 
one-way ANOVA on Ranks to compare THg concentration 
in bird’s muscle (BM), bird’s liver (BL), carnivorous fish 
muscle (FCM), carnivorous fish liver (FCL), omnivores fish 
muscle (FOM), omnivorous fish liver (FOL), Crocodilian’s 
muscle (CM) and Crocodilian’s liver (CL). Finally, we eval-
uated the relationship between different organ concentrations 
using linear regression analysis after logarithmic transforma-
tion. We used an α = 0.05 for all tests. All analyses were con-
ducted in PASW SPSS® version 19.0 for Windows (SPSS 
Inc. Chicago. IL, USA) (IBM 2015), and SigmaPlot 12.0.

Results and Discussion

All Yacare samples tissues analyzed had a detectable con-
centration of THg. The median of THg concentration for 
liver was 1.81 ± 0.80 mg  kg−1, for kidney 0.57 ± 0.30 mg 
 g−1, for muscle 0.15 ± 0.06 mg  kg−1 and for fat 0.025 ± 0.03 
mg  kg−1 wet weight (w.w). THg concentrations in different 
tissues were significantly different (H = 24.340, p  <  0.001) 
(Fig. 2). Liver had higher concentrations than muscle and 
fat (p < 0.05), but not statistically difference with kidney 
(p = 0.481). Although, a review of the literature reported 
significant correlations between the hepatic and muscle 
tissues in species such as Alligator mississippiensis (e.g. 
Burger et al. 2000), no significant correlation (Table S2) 
was found among our samples. Changes in Hg concentra-
tions with size or age (Lawson et al. 2020), or changes in 
diet (Schneider et al. 2012; Lázaro et al. 2015) may explain 
such inconsistency. Rivera et al. (2016) showed that there 
was significant correlation between Hg in muscle and animal 
size and weight, but the size range of Rivera and this study 
is too narrow for any further analysis. Since we collected all 
samples from the same type of habitats it is unlikely to have 
large variations in diet.

Metal accumulation varies among aquatic and terres-
trial species depending on a variety of factors (Smith et al. 
2007). Metals tend to have organ-specific affinities, and 
in turn, organs tend to serve as metal-specific locations 
for metal accumulation, which is known as organotropism 
(Norris 1997). In our study, the high Hg concentrations in 

the liver and the kidney are not surprising because they 
can accumulate divalent ions such as  Hg2+ due to the pres-
ence of abundant cysteine, metallothionein and glutathione 
(Zalups 2000). The accumulation of Hg into the kidney 
of various reptiles has been well studied mainly in spe-
cies of crocodilians. Consistently with our data, high Hg 
concentration has been shown to accumulate in the kid-
ney of Alligator mississippiensis, Alligator sinensis and 
Crocodylus moreletii (Yanochko et al. 1997; Jagoe et al. 
1998; Khan and Tansel 2000; Buenfil-Rojas et al. 2018) 
and also in marine turtles such as Eretmochelys imbricata 
and Chelonia mydas (Anan et al. 2001; Sakai et al. 2000). 
The presence of Hg in the kidney can lead to a Chronic 
kidney disease (CKD) (Orr and Bridges 2017) which char-
acterized by a permanent loss of nephrons and an eventual 
decline in glomerular filtration rate (GFR) (Zalups and 
Diamond 1987). Future studies about detoxification path-
way in kidney and liver of Yacare, will provided more 
information for a better understanding of pollution distri-
bution and may help its sustainable management.

The highest concentrations of THg found in our Yacare 
liver samples relative to other tissues agrees with data from 
other species of crocodilians and also other vertebrate’s 
(Rumbold et al. 2002; Lucia et al. 2010; Branco et al. 2011; 
Souza-Araujo et al. 2015; Schneider et al. 2015; Buenfil-
Rojas et al. 2018) (Table S1). Hg may be initially retained in 
the liver before distribution to other tissues and also before 
excretion as a result of higher metallothionein production 
(Piotrowski et al. 1974; Zalups and Koropatnick 2000). Still, 
the ratio between liver and muscle Hg concentrations is 
much higher in crocodilians than in any other group (Fig. 3), 
suggesting that differential accumulation or retention of Hg 
in our liver samples is higher. The relatively high concen-
trations of THg in liver may be related to the role of liver 

Fig. 2  Median with maximum and minimum values of total mercury 
concentration between different tissues of Caiman yacare harvested, 
in Colorado-Majal lakes system of TCO Tacana I. The horizontal 
line at 0.5 mg.kg− 1 indicates the recommended limit by the WHO for 
human consumption
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in detoxification (Branco et al. 2011; Buenfil-Rojas et al. 
2018).

Liver produces metallothioneins (MTs), a cysteine-rich 
metal-binding proteins, and Glutathione-s-transferase (GST) 
in response to Hg and other metal as a decontamination 
pathway (Cosson 1994; Thomas et al. 1994; Gunderson et al. 
2016). The expression of such proteins is dependent on age, 
sex and metal exposure (Gunderson et al. 2016), which may 
explain the higher Hg concentration ratio between liver and 
muscle when compared to other crocodilians. Regardless, 
the low THg concentration in fat tissue of Yacare is good 
news for Tacana people because they can continue using it 
every seasonal harvest for oil preparation and its consump-
tion as medicine (Azevedo et al. 2020).

The ratio of THg concentration between liver and muscle 
is highest in crocodilians and birds than in carnivorous and 
omnivorous fish (Fig. S1). The fish liver is a target organ 
for Hg accumulation (Hosseini and Bagher 2013). Still, in 
general, there is a relatively larger accumulation of Hg in 
muscles (Kaoud and El-Dahshan 2010), as also reported for 
birds (Lucia et al. 2010). The variation of Hg concentration 
between vertebrates may depend on the environmental con-
ditions and intrinsic factors.

The MTs involvement in the sequestration, bioaccumu-
lation, and detoxification of metals in teleosts, birds and 
mammals is not new (Hamer 1986; Nordberg and Nordberg 
2009). However, published reports support our hypothesis 
that, there are differences between MTs production among 
vertebrates (Vasak et  al. 2005; Trinchella et  al. 2008; 
Buenfil-Rojas et al. 2015). While there is a clear relation 
between metal exposure and MT and GST concentrations 

in crocodilians (Gunderson et al. 2016; Buenfil-Rojas et al. 
2018), there is no such relation at least in some fish spe-
cies (Mieiro et al. 2011). Some studies claim that the meas-
urement of MT concentrations may be a suitable tool for 
routine monitoring of metal exposure and toxicity and also 
understanding the relationship between MTs of vertebrates 
(Trinchella et al. 2008; Andreani et al. 2008). Since croco-
dilians order has been top predators for a very long time 
through their evolution (Grigg and Kirshner 2015), they may 
have been exposed to high MeHg concentrations and evolved 
more efficient or more extensive liver mediated decontami-
nation processes.

Crocodiles were suggested as a very good biomonitor 
of mercury due to their high trophic status and ability to 
bioaccumulate Hg in tissues (Khan and Tansel 2000). How-
ever, Rivera et al. (2016) and our data suggest that a better 
understanding of Hg accumulation in crocodilians tissues is 
needed. Such information also has the potential to be useful 
to the sustainable management of species and overall, to 
species conservation. We suggest that further studies should 
consider physiological pathways of Hg on crocodilians.

Conclusions

Our results show that Caiman yacare accumulates most Hg 
in their liver and kidney, which means that Tacana popula-
tion may continue the consumption of Yacare meat on the 
seasonal harvest and continue with its commercialization. 
Also, they can use Yacare fat for oil preparation and con-
sumption. It is also noticeable that the information obtained 
from the available scientific literature shows that mercury 
accumulation in tissues is highly dependent on the vertebrate 
group, which has evolutive and environmental implications. 
Additionally, understanding pollutant distribution in differ-
ent organisms may help its sustainable management.
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