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The Wildlife Conservation Society (WCS) saves wildlife and wild lands
around the world. We do this through science, conservation, education,
and the management of the world’s largest system of urban wildlife
parks, led by the flagship Bronx Zoo. Together, these activities inspire
people to imagine wildlife and humans living together sustainably. WCS
believes that this work is essential to the integrity of life on earth.

Over the past century, WCS has grown and diversified to include four
zoos, an aquarium, over 100 field conservation projects, local and
international education programs, and a wildlife health program. To
amplify this dispersed conservation knowledge, the WCS Institute was
established as an internal “think tank” to coordinate WCS expertise
for specific conservation opportunities and to analyze conservation and
academic trends that provide opportunities to further conservation effec-
tiveness. The Institute disseminates WCS’ conservation work via papers
and workshops, adding value to WCS’ discoveries and experience by
sharing them with partner organizations, policy-makers, and the public.
Each year, the Institute identifies a set of emerging issues that potentially
challenge WCS’ mission and holds both internal and external meetings
on the subject to produce reports and guidelines for the institution.

The WCS Working Paper Series, produced through the WCS Institute, is
designed to share with the conservation and development communities
in a timely fashion information from the various settings where WCS
works. These Papers address issues that are of immediate importance to
helping conserve wildlife and wildlands either through offering new data
or analyses relevant to specific conservation settings, or through offering
new methods, approaches, or perspectives on rapidly evolving conserva-
tion issues. The findings, interpretations, and conclusions expressed in
the Papers are those of the author(s) and do not necessarily reflect the
views of the Wildlife Conservation Society. For a complete list of WCS
Working Papers, please see the end of this publication.
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PART |: INTRODUCTION

American bison numbered in the tens of millions prior to European settlement,
then declined catastrophically in the late 1800s to the brink of extinction (Roe
1951). Conservation efforts for the species have been very successful, and today
there are over 500,000 bison in North America (Boyd 2003, Freese et al. 2007).
Yet the vast majority of these animals exist in carefully-managed captive herds,
divorced from the ecological processes that would influence their demographics
and population structure in nature (Boyd 2003, Freese et al. 2007, Sanderson et
al. 2008). Biologists and managers are increasingly interested in re-establishing
bison populations in areas from which they have been extirpated, and in man-
aging herds to mimic natural age and sex structure (Harper et al. 2000). All
of these goals will be more attainable with a detailed understanding of bison
demography and population dynamics.

In this review, I compile what is known of the demographic rates, popula-
tion structure, intrinsic and extrinsic regulating forces, and overall population
growth rate of American bison across their range. My goal is to assemble the
information needed to construct accurate and detailed matrix projection models
for bison populations. These models can be used in population viability analy-
sis, assessment of the effects of alternative management strategies, or to predict
equilibrium age and sex ratios. Much of the information compiled here could
be used in other types of models, such as difference or differential equation-
based models, or individual-based simulations. Yet matrix models are likely
to be the most useful quantitative tools to address most of the questions posed
by bison managers, and they are very straightforward to use. I refer readers to
Morris and Doak (2002) for an excellent and simple introduction to the use of
matrix models in conservation biology, and Caswell (2001) as a complementary
reference. While various pre-packaged software applications exist to assist in
matrix-based population viability analysis (e.g. VORTEX, RAMAS), I do not
advocate the use of these programs due to their black-box approach; data is
input and results churned out without the user knowing quite what went on.
Instead I suggest that managers use the POPTOOLS add-in for Microsoft Excel
to do simple exercises with matrices, and use the transparent MATLAB codes
in Morris and Doak (2002) to address more advanced questions.

Part I of this review introduces the issue, and Part II covers the vital rates of
individuals, in particular age- and sex-specific survivorship and fecundity, the
temporal variation in each, and factors known to influence these rates. Part III
expands the scale to the population level; here I review what is known about
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age and sex structures, and the capacity for increase or decrease in different
herds. Part IV assesses the large-scale drivers of population dynamics such as
density dependence and the various forms of extrinsic regulation (e.g. preda-
tors, disease, climate). I also include brief sections on inbreeding and spatial
dispersal; while much has been written on these subjects (indeed they could be
topics for completely separate reviews), here I am solely concerned with how
each might affect demographic vital rates or population dynamics. Finally, Part
V combines data from the previous sections to ask what structured population
models for different bison herds might look like, and what they can tell us.

It is important to note that all of the information presented here must be
evaluated critically. There is little detailed information on the demographics,
population structure, and population growth rates of bison under truly “natu-
ral” conditions (Millspaugh et al. 2005). All bison herds today are managed
by humans in some form or another, with varying impacts on vital rates and
population processes. Many managers use culling programs to achieve their
population structure targets; often management seeks to avoid high rates of
natural mortality and limit the presence of older males that can be difficult to
handle (R. Wallen, pers. comm.). Many herds are artificially maintained at sizes
where density dependence is unlikely to be strongly expressed, and selective
culling can importantly influence sex ratios and age structures. Management
actions such as culling and removals for translocation make it difficult to assess
vital rates such as survivorship. Supplemental feeding can affect survivorship as
well as reproduction. Table 1 lists the bison herds covered in this review, and
gives an overview of the major human influences on each.

It is my hope that this review will assist managers in the further re-introduc-
tion of bison across their former range.
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PART Il: INDIVIDUAL
DEMOGRAPHICS

Survivorship

Calf survival rates vary quite dramatically across populations. Annual calf
survival in the Slave River Lowlands from 1975-1979 (calculated from data in
Van Camp and Calef 1987) averaged 25.7% (temporal standard deviation = SD
=9.0%), ranging from 6-30% (Calef 1984). Average annual calf survival in the
Mary Mountain and Northern Range sub-populations of Yellowstone National
Park were 61.1% and 76 %, respectively, from 1990-1992 (Kirkpatrick et al.
1996). In the small, closed population of the Texas State Bison Herd (Halbert
et al. 2005a), annual calf survival ranged from 25-75% (X = 46.07%, SD =
23.0%). Over-winter calf survival in the Mackenzie Bison Sanctuary from
1984-1998 (calculated from data in Larter et al. 2000) averaged 54.3% (SD =
20.8%). In the Henry Mountains, average annual calf survival from 1977-1983
(Van Vuren and Bray 1986) was 95.5% (SD = 5.0%). On Catalina Island, Lott
and Galland (1985: 301) report that, “First year survival is nearly 100% in this
population.”

Adult survival rates are generally higher than those of calves, and less vari-
able. Bison in the wild occasionally live up to 20+ years (Meagher 1973); a cap-
tive individual reached age 41 (Reynolds et al. 1982). Annual adult survival in
the Mackenzie Bison Sanctuary from 1986-1991 (Larter et al. 2000) was ~96%
(SD = 0.3%). Annual adult survival in the Texas State Bison Herd (Halbert
et al. 2005a) was 94.6% (SD = 5.5%), and in Yellowstone National Park was
91-93% from 1995-2001 (Fuller et al. 2007b). Survival of adults in Badlands
National Park was 96.8-99.5%, while survival of juveniles (subadults + calves)
was 95.8-97.5% (Berger and Cunningham 1994).

Survival may be slightly higher for females than males. In Wood Buffalo
National Park, annual adult survival for females and males (with one or no
diseases) was 94.6% (SD = 1.5%) and 92.6% (SD = 1.5%), respectively (Joly
2001). In the Henry Mountains, average annual survival (excluding mortality
from hunting) of females and males was 95.2% (SD = 4.5%) and 95.2% (SD =
6.2%), respectively (Van Vuren and Bray 1986). Table 2 shows age-structured
survivorship for bison. Note that variation in sample size (and other factors)
across ages can make the estimates of survival discontinuous, which likely does

A REVIEW OF AMERICAN BISON DEMOGRAPHY AND POPULATION DYNAMICS



not accurately reflect the underlying biology. Thus it is generally more desirable
to fit a smooth curve to the data and use the predicted survival for each age
in matrix projection models (Morris and Doak 2002). For example, Shull and
Tipton (1987) present survival and sample size data for bison in the Wichita
Mountains Wildlife Reserve. Figure 1 shows the discontinuous survivorship
estimates for each age and sex (from Shull and Tipton 1987), overlain with
logistic survival functions. For females, the model fit is improved by adding
a quadratic term to the simple logistic function (AAIC_ = -27.050), suggesting
that the annual probability of survival increases from calves to young adults,
then declines as adults senesce. This incorporation of senescence is important
since the high survivorship rates reported for many adult bison very likely
decline at advanced ages (J. Gross, pers. comm.).

Survival rates may be affected by climate. The lower calf survival rate of the
Mary Mountain population in Yellowstone (reported above), as compared to
the Northern Range population, was attributed by Kirkpatrick et al. (1996) to
the former site receiving about 10cm more snowfall per year. Annual precipi-
tation had no effect on calf survival in the Henry Mountains (calculated from
data in Van Vuren and Bray 1986), possibly because rainfall varies positively
with elevation, and bison can migrate up- or down-slope to find suitable forage
(Van Vuren and Bray 1986). Harsh winters are often an important cause of
mortality, especially for calves (Fuller 1962, Van Camp 1975, Barmore 2003)
or calves and yearlings (Meagher 1973).

Survival rates are also influenced by natural and anthropogenic predation
as well as disease. Hunting in the Henry Mountains reduced average calf
survival (“natural” levels given above) to 92.8% (SD = 4.9%), a decline of
2.8% (from data in Van Vuren and Bray 1986). Figure 2 shows the effects of
hunting on adult male and female survival in this population; assuming that
hunting-induced mortality is additive, hunting reduces average annual male and
female survival by 17.2% and 5.6%, respectively. Poaching in the Mackenzie
Bison Sanctuary (Larter et al. 2000) accounted for 25% of adult male mor-
tality, though the sample size was low (1 individual of 4 killed from a total
population of 36 collared males). Wolf predation in Wood Buffalo National
Park accounted for 52.6-75% of total mortality in the Delta Herd (Joly 2001),
and survival of adult bison in this sub-population was 15.6-22% lower than
in two other sub-populations with negligible wolf predation. As with hunting
by humans, however, it is difficult to assess how much of the wolf predation
is additive versus compensatory; the lower survival of the Delta Herd could be
due to other factors as well as wolves (Joly 2001). However, calf survival in
the presence of wolf predation seems to be much lower (<50%) than in areas
lacking intense wolf predation (Calef 1984). In Wood Buffalo National Park,
the combination of tuberculosis and Brucella infection reduces adult survival
by 10% (from data in Wilson et al. 19935, Joly 2001, Joly and Messier 2004,
Bradley and Wilmshurst 2005; also see Figure 2). Sometimes the effects of man-
agement actions on survival can be difficult to assess from published studies.
For example, the mortality rates calculated for the Wichita Mountains Wildlife
Reserve (Shull and Tipton 1987) include both natural deaths and auction sales
combined, but not separately. But in Badlands National Park from 1985 to
1989 we can partition the sources of mortality; poaching accounted for an aver-
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age of 4.3% of the total deaths per year (SD = 7.2%, N = 62 deaths over the
five years), while “corral-related” mortality accounted for an average of 26.8%
of deaths (SD = 22.3%) (Berger and Cunningham 1994: 102).

Reproduction

Female reproductive output

Compared to males, reproductive output in females is less variable (in terms
of the number of calves produced per year or throughout the lifetime), longer
in duration (2-20 years), and more constant over the course of an individual’s
life (Wilson et al. 2002). Table 3 shows mean pregnancy rates of adult females
across different populations, which range considerably from 37-89%. There
can even be substantial variation among studies on the same population that dif-
fer in survey methodology and study duration; pregnancy rates in Yellowstone
range from 37-54% (Kirkpatrick et al. 1996) to 78.5% (Aune et al. 1998).
Table 4 shows the mean percentage of females that calve each year.

Age is an important determinant of female reproductive rates. Female bison
rarely breed as yearlings (Halloran 1968, Meagher 1973, Shaw and Carter
1989), and the proportion of 2 year olds in a herd that calves is usually low
(Halloran 1968, Shaw and Carter 1989, Wilson et al. 2002). Reproductive
output generally peaks later (McHugh 1958, Halloran 1968, Shaw and Carter
1989, Green and Rothstein 1991, Aune et al. 1998). Figure 3 and Table 5
show age-related variation in pregnancy and calving rates across different
populations. Several studies (e.g. Wilson et al. 2002) have noted negative linear
relationships between female age and reproductive success (Wilson et al. 2002
linear regression: R? = 0.329). Yet this negative linear relationship may be
overly simplistic. I used the data in Wilson et al.’s (2002) figure 2 to calculate
the proportion of females at each age that bred successfully. Adding a qua-
dratic term for age substantially improves the model fit (R* = 0.827, AAIC, =
-28.520). Thus age affects reproductive success non-linearly; reproductive suc-
cess increases with age initially and then declines as the individual senesces (see
Berger and Cunningham 1994). In Wood Buffalo National Park, pregnancy
rates were highest in “young adults” (X = 61.63%, SD = 17.2%, N = 324),
lower in “adults” (X = 43.19%, SD = 24.0%, N = 432), and still lower among
the “aged” (x = 38.01%, SD = 32.1%, N = 127) (Carbyn et al. 1993: 121).
However, in Yellowstone National Park, Fuller et al. (2007b) found no effects
of senescence on female pregnancy or calving rates, and Meagher (1973: 54)
found that pregnancy rates increased from “young adults” (X = 50%, N = 6)
to “adults” (X = 57%, N = 23) to “aged” (X = 75%, N = 17).

Reproductive success among young (2-8 years old) female bison may increase
with age in part because of a corresponding increase in social dominance. This
relationship has been noted at the National Bison Range (Rutberg 1983, 1986b)
and Wind Cave National Park (Green 1987), but not at Badlands National
Park (Berger and Cunningham 1994), possibly due to higher interchange of
individuals among groups at the latter site. Dominant individuals may enjoy
greater access to food (Rutberg 1986a, Kojola 1989). However, there is a trade-
off between growth and reproduction for adult female bison (Halloran 1968,
Green and Rothstein 1991); thus dominant females may have access to more
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resources, but “choose” to invest them in reproduction rather than growth.
Older females have been shown to nurse their calves more than younger
females, though this did not lead to noticeable differences in calf survival (Green
1986). Several studies have found no relationship between reproduction rates
and body mass (Green and Rothstein 1991, Berger and Cunningham 1994). Yet
by grazing near their mothers (Green et al. 1989), calves of dominant females
may have access to greater food resources and achieve higher dominance status,
size, or reproductive output (Berger 1979, Green and Berger 1990).

Female reproductive output may be affected by disease (Joly 2001) and nutri-
tional status (Verme 1969, White et al. 1989). Females in good body condition
at Badlands National Park were better able to synchronize their parturition with
the rest of the herd (Berger 1992), which may help in avoiding predators (Gates
and Larter 1990). Average birth rates for 3 year old Yellowstone National Park
bison with and without brucellosis were 40% and 63 %, respectively (Fuller et
al. 2007b). Pregnancy rates in Wood Buffalo National Park declined from 0.78
in individuals with “good” body condition to 0.68 in “poor” body condition,
but otherwise healthy, females (Joly and Messier 2004). In addition, body con-
dition may interact synergistically with disease. The difference in pregnancy
rates between animals in good and poor body condition (0.73 and 0.62, respec-
tively) was slightly greater in individuals with tuberculosis and Brucella bacteria
than in healthy animals (Joly and Messier 2004). Brucella infection alone did
not significantly affect pregnancy rates in WBNP, though tuberculosis reduced
the latter by ~33% (Joly 2001). The interaction between the two diseases may
also be important; individuals with both ailments had ~12% lower pregnancy
rates than those with neither or only one disease (Joly 2001).

Calving sequence

Female bison have been thought to reproduce roughly every other year (Halloran
1968) or 2 out of every 3 years (Soper 1941, Fuller 1961), but actually display
substantial variation among individuals in terms of how often they calve (Lott
and Galland 1985, Shaw and Carter 1989). Some of this variation may be due
to reproductive rates being affected by an interaction between body condition
and age (Green and Rothstein 1991, Kirkpatrick et al. 1996) or dominance
(Green and Rothstein 1991). Reproduction incurs long-term costs in terms of
reduced growth and lower offspring quality in years following calf production
(Halloran 1968, Green and Rothstein 1991). By following individual females
and dividing the number of calves produced in a given time period by the
number of years surveyed, estimates of mean annual per-capita production can
be generated. These range from 0.64 calves/year (SD = 0.3%) in Elk Island
National Park (recalculated from Wilson et al. 2002), to 0.66 calves/year (SD =
0.2%) in Wichita Mountains Wildlife Reserve (Shaw and Carter 1989), to 0.71
calves/year (SD = 0.2%) on Catalina Island, California (recalculated from Lott
and Galland 1985).

Bison nearly always bear a single calf at a time. Twinning is often reported
to be very rare (Halloran 1968, Meagher 1986, Rutberg 1986b, Shaw and
Carter 1989, Novak 1999), but it is difficult to find actual estimates of its
frequency. Only one set of twins was born out of 5633 births (twinning rate
~ 0.02%) over 58 years in the Wichita Mountains Wildlife Reserve (Halloran
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1968). McHugh (1958) recorded one set of twins as well, but did not report the
total number of births observed. It is also uncommon for females to have more
than one estrus in a given year; only 3 of 154 pregnant females (1.9%) killed in
Fort Niobrara Wildlife Reserve and Wind Cave National Park were found with
two corpora lutea (Haugen 1974).

Male reproductive output
Few studies have assessed how age affects reproductive effort in males as com-
pared to females. Asin most mammals, reproductive success is much more vari-
able amongst individuals in male bison than in females (Berger and Cunningham
1994, Wilson et al. 2002). In a 4-year period in Elk Island National Park, the
number of calves produced per female ranged from 0-4 whereas the number
produced per male ranged from 0-24 (Wilson et al. 2002). In a 4-year period in
Badlands National Park, the range in number of calves produced per female and
per male was 0-4 (X = 2.43, SD = 1.2%) and 0-16+ (Berger and Cunningham
1994). In a 3-year period at Hook Lake, the number of calves produced per
male ranged from 0-30 (Wilson et al. 2005). Age is related to dominance
(Roden et al. 2005), though these effects may be non-linear, with the dominance
peaking at approximately 9-11 years (Wolff 1998). Although age is clearly an
important determinant of male reproductive success, this is apparently not due
to an increase in body mass with age; most studies find no relationship between
male mass and reproductive success (e.g. Wolff 1998). In contrast, Wilson et
al. (2002) did find an effect of body mass on male reproductive success, but
they used post-rut weight measurements which may be biased in that mature
males lose more weight over the course of the rut than non-mating males (Wolff
1998). Berger and Cunningham (1994) also found a strong correlation between
age and body weight in males (R = 0.78) at Badlands National Park, though at
Fort Niobrara, the National Bison Range, and the Wichita Mountains Wildlife
Reserve weight increased with age only until age 7-9, at which point the rela-
tionship flattened out (Berger and Peacock 1988).

Male reproductive output is more sharply peaked than in females, with
a greater difference between productivity at the optimum age versus older
or younger individuals (Wilson et al. 2002). Males may occasionally reach
sexual maturity as yearlings (Fuller 1962), but this is likely quite rare (Halloran
1968). Though most males may reach physiological maturity by 2-3 years
old, the presence of older dominant bulls generally delays mating until about
5-6 (Maher and Byers 1987, Wilson et al. 2002); thus the age structure of the
herd importantly affects mating opportunities of bulls at different ages (Komers
et al. 1994). The onset of the rut at Fort Niobrara Wildlife Refuge led to no
discernible change in the proportion of time spent active for 1-5 year old males
(Maher and Byers 1987). Four year olds actually spent more time grazing after
the rut began than they had before (Maher and Byers 1987). In contrast, males
6 years and older became more active and grazed less after the onset of the rut;
this was particularly marked for the 9-12 year olds (12 years was the maximum
age surveyed in this study) (Maher and Byers 1987). Among wood bison in Elk
Island National Park, siring of calves (using genetic markers to assign paternity)
started at age 5, peaked at ages 8-14, and was last recorded at age 14 (the maxi-
mum age surveyed was 18, though there were only four individuals between
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ages 14-18; see Figure 4) (Wilson et al. 2002). However this relatively crude
metric of male reproductive output only measured annual reproductive success
as a binary variable; there could plausibly be important, untested, effects of age
on the number of calves sired per year. Lott (1981) noted a positive relationship
between male dominance status and the number of cows bred on the National
Bison Range.

Genetic techniques offer a promising tool to assess male reproductive out-
put (Roden et al. 2002). Molecular assignations of bison calf paternity in Elk
Island National Park (Wilson et al. 2002) and Hook Lake (Wilson et al. 2005)
generated measurements of the average number of calves sired by successful
bulls of 1.96 (SD = 1.4) and 3.87 (SD = 5.2), respectively. These estimates are
lower than those generated by studies that measure male reproductive success
by observed copulations (e.g. Wolff 1998) because not all copulations lead to
pregnancy. An important, and untested, question concerns how the number of
calves sired per bull varies with male density. As the proportion of males to
females in the population declines, we might expect the reproductive success
rate of a given individual male to increase. But given the paucity of data that
allow us to estimate even static measures of male reproductive success, it will be
very difficult indeed to assess variation in success as a function of male density.
An analysis of data presented in Wilson et al. (2002) shows no relationship
between the number of calves sired per successful male and either a) the total
number of successful males (linear regression: Fl,Z =0.000, p = 0.990) or b) the
total number of mature males in the herd (Fl,z =0.110, p = 0.772), though the
short timeseries (4 years) severely limits the power of these tests.
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PART |1I: POPULATION
STRUCTURE AND
GROWTH RATE

Sex structure

In many mammals, iz utero sex ratios are slightly skewed towards males (Fuller
1962). Bison appear to follow this pattern; Haugen (1974), Fuller (1962), and
Rutberg (1986b) all report that >50% of fetuses were male (see Table 6). Yet
the evidence for this pattern persisting after birth is equivocal; Table 6 shows
high variation among populations in terms of calf sex ratios after birth, ranging
from 46-54% male. Sex ratios may change across age classes due to differential
survival between the sexes. McHugh (1958) reports exact parity among 5-8
month old calves (N = 1465). Van Vuren and Bray (1986) show a 42-50% male
rate among 14-16 month old yearlings from 1977-1983 (N = 192).

There is some evidence that offspring sex may partly be determined by
maternal condition. Trivers and Willard (1973) suggested that mothers in good
condition should preferentially produce sons in species with a) small litter size,
b) male-male competition (where reproductive success is strongly influenced
by body condition), and ¢) strong correlation between maternal and offspring
condition. Put another way, female reproductive success is less variable than
that of males, and less strongly dependent on good body condition; therefore
females would maximize their own fitness by having daughters when they are in
poor condition and sons when they are in good condition and can pass on the
extra resources to their offspring. Bison satisfy the above conditions. Rutberg
(Rutberg 1986b) found that the offspring sex ratio of lactating (presumably
resource-stressed) females on the NBR was near parity (49.1% male), while the
offspring sex ratio of non-lactating (less resource-stressed) females was highly
male skewed (86.2% male). However, Shaw and Carter (1989) found no sig-
nificant differences in the offspring sex ratios of lactating and non-lactating
females in the Wichita Mountains Wildlife Reserve. Likewise, females in Elk
Island National Park that did not produce calves one year (and should therefore
have been in better condition that those that did produce) were no more likely
to have male offspring the next year than females who had calved the first year
(Wilson et al. 2002).
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It is difficult to assess “natural” sex ratios among adult bison, given the
very different (but often intensive) management and culling regimes of different
herds. Among wood bison adults (>2 yrs) in the Mackenzie Bison Sanctuary,
the male percentage ranged from 40.9% to 44.6% across 3 years (N = 1941)
(Gates and Larter 1990). In the declining population of the Slave River
Lowlands (1974-1983), Van Camp and Calef (1987: 21) reported a “skewed
adult sex ratio” of 24.2% males. In the hunted population of the Henry
Mountains, adult sex ratio ranged from 34-41% male between 1977 and 1983
(Van Vuren and Bray 1986). The Etthithun population in British Columbia had
an adult sex ratio of 23.7% male in 2006, though this is likely a legacy of the
heavily female-biased introduction in 2000 (Rowe and Backmeyer 2006). In
Yellowstone National Park from 1964-66, the percentages of trapped individu-
als that were male were 57% (N = 71) for calves, 51% (N = 47) for yearlings,
52% (N = 24) for 2 year olds, 37% (N = 16) for 3 year olds, and 64% (N
= 159) for adults (Meagher 1973). However, it should be noted that gender
differences in dispersal and capture probability may bias these assessments of
Yellowstone sex ratios.

Age structure

The proportion of the population made up of calves and yearlings varies sub-
stantially across populations, as well as over time within populations. These
proportions are usually measured as the number of calves or yearlings per 100
adult females; the former also serves as an important metric of herd productiv-
ity. Since the calf to adult female ratio integrates across actual reproductive
rates as well as calf survival until the census, the measurements can be utilized
in birth-pulse matrix models (see Morris and Doak 2002, chapter 6). Temporal
variance in the measure over time can also be used to incorporate environmen-
tal stochasticity into the population model (see Morris and Doak 2002, chapter
8). Figure 5 shows trends in calf:cow ratios for 4 populations. Mean calf
per 100 cow ratios vary from 31 (¢ = 30.2) in Wood Buffalo National Park
(Bradley and Wilmshurst 2005) and 34 in the Etthihun bison herd (Rowe and
Backmeyer 2006), to 50.7 (6% = 329.4) in the Henry Mountains (Van Vuren and
Bray 1986). In addition to the data presented in Figure 5, Van Camp and Calef
(1987) report an average of 35 calves per 100 cows in the Slave River Lowlands.
Calf percentages in the Henry Mountains were positively, non-linearly related
to pre-conception precipitation levels (Van Vuren and Bray 1986). Likewise,
calf ratios in Yellowstone from 1995-2001 were negatively related to winter
snow-water-equivalent and positively related to the Palmer Drought Severity
Index (a measure of the wetness of a given year), indicating that harsh winters
and summer droughts are detrimental to reproduction and/or calf survival
(Fuller et al. 2007b). It should be noted, however, that some of the variation in
calf:cow ratios among herds may be due to different interpretations of the age
at which females are considered “adults” (J. Berger, pers. comm.).

The proportion of yearlings in the population also show considerable varia-
tion. Figure 6 shows the number of yearlings per 100 cows across 3 popula-
tions, ranging from 10 (SD = 5.9) in Wood Buffalo National Park (Bradley and
Wilmshurst 2005) to 42 (SD = 15.8) in the Henry Mountains (Van Vuren and
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Bray 1986). The late winter yearling ratio in the Etthithun bison herd was
19:100 cows (Rowe and Backmeyer 2006). Figure 7 shows the age structure of
adult females and males.

Population growth rate

Bison populations have the ability to increase or decrease quite rapidly, depend-
ing on a variety of conditions. Table 7 shows the estimated population growth
rates for a variety of populations. In 1963, 18 bison were re-introduced to
the Mackenzie Bison Sanctuary and increased at an average of 22.3% per year
over the next 26 years, at which point population growth declined (calculated
from data in Larter et al. 2000). The bison population in the nearby Slave
River Lowlands grew at an average of 25.4% per year from 1948-1957, then
declined at 7.2% per year until 1983 (calculated from data in Van Camp and
Calef 1987). The 39 bison in the National Bison Range in 1909 expanded to
a population of 554 by 1922 (22.1% annual increase), at which point yearly
removals were instigated (reducing the 1909-1928 growth rate to 15.3% per
year) (Gross et al. 1973, Fredin 1984). Though the population growth rate in
the Henry Mountains estimated from long-term index data (1949-1982) was
3.8% per year, actual population counts from 1977-1983 show an increase of
9.2% per year (Van Vuren and Bray 1986). Note in Figure 7 that the overall
Wood Buffalo National Park population declined from 1971-1999 (Bradley
and Wilmshurst 2005), driven by a decline in the two largest of the five sub-
populations (Joly and Messier 2004).

Managers may be acutely interested in how quickly their bison herds can
increase or decrease. Several studies provide time-series of annual counts, which
can be used to estimate population growth rate. The stochastic log growth rate
(#) for a given population can be estimated from the regression procedure of
Dennis et al. (1991) (also see Morris and Doak 2002). Specifically, the natu-
ral log of the incremental change in population size (e.g. from one population
count to the next) is divided by the square root of the time increments (between
counts) to generate an array of independent variables (y):

N
10 t+1
ge( th

N
v Lia—1
where N; and t; are the population count and year, respectively, in year ¢. The
y array is regressed, with the intercept forced through 0, against an array of
independent variables (x), where:

X, =4/t

tl‘

+1

The slope of this regression is an estimate of ¢, and the 95% confidence limits

([‘ - (t0.0S,q—l x SE[/'A‘])M[J + (t0.0S,q—l X SE[/}]»

of /1 are:
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where SE [ /1] is the standard error of the regression slope and £ 5 ,_; is two-
tailed Student’s ¢ distribution critical value with o = 0.05 and degrees of freedom
equal to the number of transitions in the time-series (g) minus 1. Finally, the
stochastic log growth rate estimates are converted into measures of discrete
population growth:

A=e"
where 1 = 1 indicates a population not growing over the long term, while 1 <
1 and ] > 1 indicate declining and increasing populations, respectively.
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PART IV: POPULATION
REGULATION

Density dependence

Population growth is often affected, at least in part, by population density,
though density dependence is often obscured or precluded by extrinsic regulat-
ing factors, and may or may not be detectable in natural populations (Saether
1997, Singer et al. 1998, Gaillard et al. 2000). An understanding of how den-
sity affects different vital rates (e.g. survival or reproduction) or overall popula-
tion growth is critical for accurately predicting bison population dynamics.

Very few studies have explicitly examined density dependence in bison.
Berger and Cunningham (1994) found few detectable effects of density on vital
rates, except for a positive relationship between density and natural mortality.
Fuller (2006) and Fuller et al. (2007a) found evidence of density dependence in
both the northern and central herds in Yellowstone National Park, though the
effects were stronger in the former, particularly from 1970-1981, when bison
were not culled from the population (Treanor et al. 2007). Density regula-
tion of growth rate in the central herd may have been less noticeable than in
the northern herd because of density-induced emigration from the central to
northern ranges (Fuller et al. 2007a). The number of young produced per year
among 3 year old females on the National Bison Range dropped from ~0.7 at
a population size of 100-200 to ~0.3 at a population size of 500 (Gross et al.
1973, Fredin 1984).

But even in studies that do not explicitly assess density dependence, we can
sometimes extract information from existing data to test for its effects. We can
use time-series of bison counts for “first-pass” assessments of density depen-
dence, following the methods of Morris and Doak (2002; chapter 4). Here we
fit three models to the time-series data, and compare them using information
criteria. The simplest of the three is the straightforward exponential growth, or
density independent, model. The most complex is the theta logistic, where log
annual population growth (Y}) is given by:

14
Y, =log, N =r1- (%j
N, K
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where N; is abundance in year ¢, 7 is the intrinsic rate of increase, K is the “car-
rying capacity,” or the maximum number of individuals the environment is able
to support before population growth becomes negative, and 6 is a parameter
controlling the shape of the density dependence function. The final model is the
Ricker model, where log population growth rate declines linearly with popula-
tion density (Morris and Doak 2002); this is mathematically equivalent to the
theta logistic equation with 6 set equal to 1 (Morris and Doak 2002). In the
Mackenzie Bison Sanctuary (data analyzed from Larter et al. 2000), the popu-
lation is best fit by a Ricker density dependence model, though the evidence is
exponential = 0-41). This popula-
tion provides an interesting illustration of density dependence in bison, where

equivocal (Akaike weights: OR;cker = 0.51, ©

abundance rapidly but sigmoidally increases for about the first three decades, at
which point it begins to fluctuate. These fluctuations are approximately around
the carrying capacity (]% = 2035) predicted by an allometric relationship
between herbivore body mass and population density (Nudds 1992). Larter et
al. (2000) speculate the population growth was limited either by a reduction in
the availability of high quality forage or increased predation by wolves on bison
calves. A more recently formed sub-population (at Mink Lake) has better qual-
ity forage, and higher levels of adult female reproduction and calf over-winter
survival (Larter et al. 2000). In Wood Buffalo National Park (data analyzed
from Bradley and Wilmshurst 2005), the evidence for density dependence is
similarly equivocal (©exponential = 0-54; @Ricker = 0-44). The Henry Mountains
population (data analyzed from Van Vuren and Bray 1986) demonstrates a
similar situation, (®exponential = 0-54; ORicker = 0.37). In all of these cases,
model averaging (see Burnham and Anderson 2002) could be used to input the
best-supported density dependence information into population models.

The first-pass assessment of density dependence above, using time-series
of abundance, can be useful for un-structured population models (i.e. those
that treat all individuals the same, regardless of age or sex). However, bison
managers will likely more often be interested in structured models (e.g., pro-
jection matrices) to more accurately predict population dynamics as well as
track changes in age and sex structure. To incorporate density dependence into
matrix models, we need to know which vital rates in particular (e.g., juvenile
survival, age at maturity for females, etc.) are affected by density, as well as
which measure of density matters (e.g. just adults or the whole population).
With time-series of density (or its surrogate, abundance) and annual measures
of vital rates, we can assess particular levels of density dependence with the
Ricker function. For example we might measure the effects of density on adult
survival (S;) as:

S =8, xe ™"

where S is survival when density approaches zero, Dy is density at time ¢, and
is a fitted parameter. In practice this model is easily fit with a linear regression
of the natural log of survival versus density; the slope of the regression is -f and
the intercept is the natural log of Sy (Morris and Doak 2002). Unfortunately, it
is rare to find all of these data for a given population. In one case where they
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do exist, total bison abundance in Wood Buffalo National Park (data analyzed
from Bradley and Wilmshurst 2005) shows no effect on juvenile survival (R? =
0.120, p = 0.189), adult male survival (R = 0.013, p = 0.675), or adult female
survival (R? = 0.013, p = 0.675). In another case, the expected total abundance
of adults in the Mackenzie Bison Sanctuary (from a logistic model fitted to data
in Larter et al. 2000) shows a marginally significant effect on over-winter calf
survival (8 = -0.001, R? = 0.242, p = 0.074). This may partially explain the
density dependence observed in the overall population dynamics of this herd
that was detected using the count-based analysis above.

Dispersal and colonization

Certain bison populations consist of several sub-populations with dispersal
among them. In these cases we can model the overall population dynamics
by accounting for the internal demographics of each sub-population as well
as dispersal amongst them. Dispersal of adult bison in the Mackenzie Bison
Sanctuary was said to be “innate” (i.e. genetically determined, density indepen-
dent) for males and driven by “pressure” (i.e. density dependence) in females
(Gates and Larter 1990, Larter et al. 2000). Gates and Larter (1990: 236)
report that:

“Expansion of the Mackenzie population was density dependent; major

shifts occurred when a critical density threshold of 0.5-0.8 bison km™

was reached. The most parsimonious explanation for the observed pat-
tern of range expansion is an adaptation to avoid a high level of resource
limitation.”

Similarly, rising density in the central herd of Yellowstone National Park
likely led to substantial emigration to the northern range of the park. The
carrying capacity for bison in Yellowstone was estimated at 2800-3200 (Taper
et al. 2000); density-induced emigration from the northern range of the park
led to culling as individuals left the national park (Gates et al. 2005, Fuller et
al. 2007a, Treanor et al. 2007). Exchange of individuals between these herds
was estimated at 4.85-5.83% annually (Olexa and Gogan 2007), and may be
facilitated by road grooming during winter (Meagher 1993, Taper et al. 2000,
Bruggeman et al. 2007). Movement between sub-populations may be episodic
rather than continuous; Fuller et al. (2007a) estimate that an important flux of
individuals from the central range to the northern range occurred during the
winter of 1982. Likewise, dispersal across the Peace River in Wood Buffalo
National Park may, “...vary considerably depending on such factors as flood-
ing and predator activities” (Carbyn et al. 1993: 108). Population density in
Badlands National Park was positively correlated with the number of animals
found outside the park, suggesting density-induced emigration or range expan-
sion (Berger and Cunningham 1994).

Inbreeding

Conservation genetics are of huge concern for the management of small popula-
tions, and much work has dealt with this issue explicitly in bison (Halbert et al.
2005a, Halbert et al. 2005b, Halbert and Derr 2007). For the purpose of this
review, I focus solely on how genetics may affect bison demography.
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Most bison herds today are small and closed, introducing the possibility
that inbreeding could affect vital rates or population growth (Wilson et al.
2005). Acute inbreeding (as opposed to chronic inbreeding) occurs when once
large populations are quickly and drastically reduced in size. Acute inbreeding
is often a critical problem, and may occur in certain American bison popula-
tions (Freese et al. 2007). Bison socioecology suggests that the species may be
adapted to be outbred (Lott 1991). Indeed, the effective population sizes of
bison at the Wichita Mountains Wildlife Refuge (Shull and Tipton 1987) and
Badlands National Park (Berger and Cunningham 1994) were only 8.4-29.6%
and 37.4-42.7%, respectively, of the total population sizes. Though many stud-
ies have looked at bison genetics and assessed heterozygosity, few have asked
how this in turn might influence demography or abundance. Inbred bison in
the Badlands National Park had lower pre-winter body weights than their less
inbred counterparts (Berger and Peacock 1988), which could importantly affect
over-winter survival (DelGiudice et al. 1994). Halbert et al. (2005a: 263) esti-
mated that genetic variation in the Texas State Bison Herd was being lost, “...
at a staggering rate of 30-40% within the next 50 years,” and that this led to
a Sl-year extinction probability of 99%. Inbreeding in small herds should,
however, be relatively easy to ameliorate. Halbert et al. (2005a) suggest that the
introduction of new, unrelated bulls could lower the 51-year extinction prob-
ability to ~0%. Even in larger, free-ranging populations, care must be taken
to ensure that management activities such as culling do not degrade genetic
diversity (Gross et al. 2004).

Extrinsic population regulation

In addition to the “self-limitation” of population size via density dependence
and inbreeding, many external factors can affect bison abundance. The effects
of disease, wolf predation, hunting by humans, and climate on individual vital
rates have been discussed above (see Part II). But the impacts of these factors on
overall population dynamics for bison remain under-studied and, in some cases,
controversial. Simulation models suggest that bison population growth rates
can be limited by disease (Peterson et al. 1991b). Fuller et al. (2007b) suggest
that brucellosis vaccination in Yellowstone National Park could raise the bison
population growth rate (but see Tunnicliff and Marsh 1935, Meagher 1973).
Bison abundance in the Mackenzie Bison Sanctuary may be limited by internal
density dependence and external wolf predation (Gates and Larter 1990). The
bison population crash in the Slave River Lowlands from 1974-1983 has been
attributed to a combination of disease and predation by humans and wolves
(Van Camp 1987, Van Camp and Calef 1987). Wolves in Wood Buffalo
National Park appear to exhibit a Type II functional response, in that their per
capita kill rates are positively, but asymptotically, related to bison density (Joly
2001). In such situations, especially where wolf numerical responses are lim-
ited by their own territorial behavior (Messier 1994, Messier and Joly 2000),
bison populations that grow large enough can escape from regulation of their
abundance by predators. But Joly and Messier (2004) argue that tuberculosis
and brucellosis limit bison populations enough so that predator regulation can
occur, and that this synergy explains a long-term decline in bison abundance
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in Wood Buffalo National Park. Moreover, anthrax may have been respon-
sible for massive bison die-offs in the mid-1800s in what is now Wood Buffalo
National Park (Ferguson and Laviolette 1992), though anthrax continued to
be present from 1962-1991, only killing 0-0.9% of the population per year
(Carbyn et al. 1993). Hemorrhagic septicemia also led to “considerable mortal-
ity” in the introduced herd of the Lamar Valley (Yellowstone National Park)
during the early 1900s (Meagher 1973: 70). Bradley and Wilmshurst (2005)
dispute the “disease-predation” hypothesis for Wood Buffalo National Park
and show that bison populations there have recently started increasing rapidly
despite constant levels of disease and predation. Bison populations can also be
limited by mortality induced by vehicle collisions on large roads; this is thought
to be a more important population regulation mechanism than wolf predation
in Nordquist, British Columbia, bison (Rowe 2007).

Climate can also importantly affect bison vital rates and population
structure. The proportion of calves in the Henry Mountains herd increased
asymptotically with pre-conception precipitation (Van Vuren and Bray 1986).
Population growth rate and calf recruitment in the central herd of Yellowstone
National Park were negatively correlated with snow pack (Fuller 2006, Fuller
et al. 2007b). Extracting data from other published studies, I assessed climate
impacts on populations in other locations using autoregressive techniques widely
applied to other species (Stenseth et al. 1999, Forchhammer and Post 2004, Post
2005). I generated time-series of winter snowpack in the Northwest Territories
(Canada) by taking the December-March average for all weather stations in the
territory from Environment Canada (http://www.climate.weatheroffice.ec.gc.ca/
climateData/canada_e.html), and compared these to corresponding vital rate
and abundance time-series for Wood Buffalo National Park (from Bradley and
Wilmshurst 2005) and the Mackenzie Bison Sanctuary (from Larter et al. 2000).
Juvenile survival rates (natural log transformed) in Wood Buffalo National Park
were marginally significantly related to winter snowpack levels (8 = -0.025, R?
= 0.218, p = 0.068). To assess the population-level impacts of climate, I used
an autoregressive time-series model (c.f. Post 2005):

X=X+ 280X, + 2 (8 ,)C

Jj=0

where X, is the natural log of abundance in year ¢, C; is the climate measure
(e.g. annual snowfall) in year ¢, i and j are time lags for the effects of density
and climate, respectively, f, is the regression intercept, and g, (for b = 1-6)
are parameter coefficients. Following the methods outlined in Post (2005), I
first used maximum likelihood techniques to determine the most parsimonious
autoregressive dimension, then added climate terms at different time lags to see
if model fit was improved. The most parsimonious autoregressive dimension
was 1 (thus the model included X, ) and I tested the eight possible combina-
tions of climate lags. The most parsimonious population model for the bison
of Wood Buffalo National Park includes a term for snowfall at a 3-year lag (8 =
-0.01, R% = 0.94, Akaike weight compared to 7 other models = 0.40). The time
lag suggests that the influence of winter conditions on the population dynamics
of this herd could be felt through impacts on body condition (see DelGiudice et
al. 2001) that translate into differential reproduction or survival.
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PART V: POPULATION
MODELS AND OUTPUT

Existing population models for bison

Compared to many mammals, the demography of bison is relatively well
researched. Different studies have employed a variety of population models
for this species, generally to address two questions: the interplay of disease
and demography, and the interplay of genetics and demography. Halbert et al.
(2005b) used stochastic simulations to test the degradation of genetic diversity
in a small, enclosed herd, and to ask how importation of animals would rectify
the issue. Gross et al. (2006) used an individual-based model that combined
demography and population genetics, to assess how different management
strategies affected the maintenance of genetic diversity. Several models have
been used to assess disease transmission rates. Peterson et al. (Peterson et al.
1991b, a) used age-structured, yearly time-step models to predict Brucella infec-
tion rates and the efficacy of vaccination programs in the National Bison Range
and Grand Teton National Park. The Brucella-transmission issue has also been
approached in Yellowstone with models that pooled individuals of all ages,

2

and grouped them into “infected,” “susceptible,” and “recovered” (Dobson
and Meagher 1996), and by stage-structured stochastic models (National Park
Service 2000, Angliss 2003). Individual-based models have also been employed
to account for stochasticity in the transmission behavior of individuals (Gross
et al. 1998, Gross et al. 2002). Such individual-based models are well suited
for assessing the effects of rare, highly variable, and stochastic events such as
disease transmission (Gross et al. 1998). However, they generally rely on very
simple, stage-structured models and are therefore not ideal for detailed demo-
graphic analyses. The simultaneous effects of disease and wolf predation have
been examined with age-structured, discrete models (Joly and Messier 2004),
and age-structured stochastic simulations (Bradley and Wilmshurst 2005).

A sample population model for bison

The construction and use of matrix projection models is covered in detail in
Morris and Doak (2002) and Caswell (2001). As an example of some of the
ways in which they can be used, I built a series of models for a hypothetical
bison herd, based on vital rates extracted from different populations. Age-
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based male and female survivorship values came from Grand Teton National
Park (Peterson et al. 1991b), age-based female reproduction from Wilson et al.
(2002), and age-based male reproduction from Berger and Cunningham (1994).
Smoothed values from logistic, linear, or quadratic functions were used rather
than observed values (see Figures 1, 3, and 4), to avoid discontinuous jumps in
vital rates across ages. See Table 8 for details of the model structure. The left
eigenvector of the resulting deterministic matrix represents the stable age distri-
bution, or proportion of the individuals in each age class once the population
reaches equilibrium. The right eigenvector represents the reproductive value
of each age class, or its relative importance to population growth. The stable
age distributions for males and females are similar (Figure 8A), with inverse
relationships between age and abundance in the population. The reproductive
values differ between the sexes however (Figure 8B), peaking at ages 5-7 for
females and 8-10 for males.

Projection matrices can also be used in “sensitivity analysis” to assess the
impact of different management options on population growth rate. For
example we might measure how much population growth rate changes due to
small changes in various vital rates, which allows us to explore the management
implications of altering those rates. The elasticity, or proportional sensitivity
(Caswell 2001), of age- and sex-specific survival and reproduction rates are
shown in Figure 9. As in nearly all long-lived animals (Pfister 1998), survival
rates in bison have higher elasticities than reproductive rates. Commensurate
with the delayed peak in male reproductive value, the reproductive elasticities
peak at later ages in males than in females.

Simulations with matrix models also allow us to test the effects of different
types of density dependence on population growth. In a density-independent,
female-based model described using the vital rates described above, the popula-
tion grows exponentially at a discrete rate of A = 1.12 (Figure 10). Note that
the growth rate of this hypothetical population differs from those observed in
actual bison populations (Table 7) since it draws on vital rates from a variety
of populations. Nevertheless the estimated growth rate is close to the average
growth rate among all the populations presented in Table 7. Incorporating the
density-dependent calf mortality detected in the Mackenzie Bison Sanctuary (see
“Density Dependence” section above) into the general bison population model
described above restricts the population growth trajectory to sigmoidal over a
100-year time frame. Adding the more severe effects of density on total natural
mortality detected by Berger and Cunningham (1994) in Badlands National
Park restricts the growth rate and equilibrium population size substantially
more.

We can also use the matrix models to assess the impact of anthropogenic
influences on bison population dynamics. For each of 10,000 stochastic simula-
tions, I iterated the population size at each year for 100 years, where each vital
rate in each year was randomly drawn from a beta distribution characterized
by the mean vital rate as above (in the deterministic models) and assuming 10%
temporal variance. I then calculated the mean stochastic growth rate, and its
confidence intervals, across several alternative management regimes. Diseases
and hunting have been shown to affect bison survival rates (see Figure 2), but
with the matrix models we can assess their impact on overall population growth
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rates (Figure 11). The lowered survival rate of bison in Wood Buffalo National
Park with both tuberculosis and brucellosis reduced the stochastic, density
dependent growth rate by an average of 7.9%, while the lowered survival of
bison in the Henry Mountains from hunting reduced the population growth
rate by an average of 5.6%.

Sex ratio and population growth

As noted above (see “Sex structure”), it is very difficult to determine what
“natural” sex and age structures might be for bison. There is substantial varia-
tion in sex structure among extant herds, probably largely due to their different
management and harvest regimes. “Natural” sex ratios may be approximately
50-60 bulls to 100 cows: 33-38% males (P. Gogan, pers. comm.). Sex struc-
ture is a relatively easy factor for bison managers to manipulate and can have
important effects on population growth; thus it can serve as a useful tool for
regulating herd size. 1 assessed how sex structure affects population growth
with simulations. T assumed that managers would cull or remove calves from
the herd, as these would constitute the easiest life stage to transport. I started
with a two-sex model based on the sample above, and varied the calf sex ratio
from 0-100% male. Assuming that at least one adult male remains in the herd
that can fertilize all of the adult females, then the more the calf ratio is skewed
towards females the faster the population will grow. The decline in growth
rate as the percent of calves that are male goes from 0 to 90 is fairly slow and
linear; above 90% male the population growth rate declines quickly (see Figure
12). Thus the manipulation of calf sex ratio can importantly affect population
growth rate. However, care must usually be taken that culling and removal
programs do not contribute to a loss of genetic variability in the herd (Gross et
al. 2006). In a series of simulations, Gross et al. (2006) tested how well vari-
ous population control options maintained genetic diversity in bison herds, and
concluded that, “...strategies that increase generation time, such as removal
or contraception of young animals, most effectively retain genetic variation”
(Gross et al. 2006: 3).
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Figure 1: Average survivorship for each age (gray bars) from the Wichita Mountains
Wildlife Reserve (Shull and Tipton 1987), overlain with fitted logistic functions (black
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Figure 2: Adult survivorship by sex in Wood Buffalo National Park (“control” = 0-1
diseases, “treatment” = tuberculosis + brucellosis) (Bradley and Wilmshurst 2005)
and the Henry Mountains (“treatment” = hunting) (Van Vuren and Bray 1986). Error
bars show temporal standard deviation.
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Figure 3: Observed annual female reproduction by age (gray bars) and expected

reproduction (black bars) from a fitted logistic function A) in Elk Island National
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1 4 @~2300+0.738x-0.036x

-246.47, p < 0.001), and B) in Badlands National Park (Berger and Cunningham
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1994) where j} = (LL =-188.31, p < 0.001).

~2.298+0.750x-0.041x>

l+e
90 - A
80 - B observed
70 - [0 expected
60 -
50 -
4 40 4
O
(8]
© 30 -
o
-
‘C 20
>
©
o 10
.
o
S5 o
T e T S
(1]
<
(8]
4_190_
[
S B
S 80 -
o
7070—
>
S 60 -
<
50 -
40 -
30 -
20 -
10 -
0
2 > % A ) N > o «
W @ % ~ 5 N 3
S N N >

Female age (years)

A REVIEW OF AMERICAN BISON DEMOGRAPHY AND POPULATION DYNAMICS



24

Figure 4: A) Annual male reproduction over 4 years in Elk Island National Park
(Wilson et al. 2002). B) Observed annual male reproduction (gray bars) across age
classes in Badlands National Park (Berger and Cunningham 1994) and expected
reproduction (black bars) from a fitted function (F2 188 = 343.2, R2=0.785, p <

0.001), where $ =—2.874 +0.846x —0.040x>
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Figure 5: Calf:cow ratios over time in A) the Mackenzie Bison Sanctuary (Larter et al.
2000), B) Wood Buffalo National Park (Bradley and Wilmshurst 2005), C) the Henry

Mountains (Van Vuren and Bray 1986), D) Yellowstone National Park (DelGiudice et

al. 2001) and E) Yellowstone National Park (Fuller et al. 2007b).
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Figure 6: Yearling:cow ratios over time in A) the Mackenzie Bison Sanctuary (Larter
et al. 2000), B) Wood Buffalo National Park (Bradley and Wilmshurst 2005), and C)
the Henry Mountains (Van Vuren and Bray 1986).
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Figure 7: Age structure of A) adult males in the Fort Niobrara Wildlife

Reserve (Maher and Byers 1987) overlain with polynomial trend line where
$=0.136-0.014x + 0.001x>, and B) adult females in the Wichita Mountains
Wildlife Reserve (Shaw and Carter 1989).
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Figure 8: Stable age distribution (A) and age-specific reproductive values (B) from
the deterministic matrix projection models described in Part V.
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Figure 9: Elasticities of survivorship and fecundity vital rates from the deterministic

matrix projection models described in Part V.
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Figure 10: Effects of population density on population growth, from deterministic

matrix projection models described in Part V.
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Figure 11.: Effects of tuberculosis + brucellosis (from Joly 2001) and hunting (from
Van Vuren and Bray 1986) on the density-dependent, stochastic population growth
rate of bison, from matrix projection models described in Part V. Horizontal lines and
boxes show mean population growth rate (A) and 25% confidence intervals, respec-
tively; error bars show 90% confidence intervals.
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Figure 12: Population growth rate (A) as a function of the percent of total calves that
are male, assuming that enough adult bulls remain in the herd to fertilize all of the
adult females.
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Table 2: Survivorship across different studies, stratified by age and gender. Sample
sizes (where available) in parentheses. See Table 1 for interpretation of location
acronyms.

Q Survival (%) 3 Survival (%)
Age NBR? GTNP? WMWR? WMWR?
0 94 77 96 (655) 98 (681)
1 98 88 55 (632) 62 (665)
2 99 99 76 (350) 75 (414)
3 99 99 89 (265) 60 (311)
4 99 99 95 (235) 91 (186)
5 99 99 89 (224) 84 (170)
6 99 99 86 (200) 91 (143)
7 99 99 91 (171) 84 (130)
8 99 99 87 (155) 83(109)
9 99 99 76 (135) 86 (91)
10 99 99 82 (103) 79 (78)
11 99 99 77 (84) 66 (62)
12 99 99 54 (65) 61 (41)
13 98 98 57 (35) 60 (25)
14 98 98 55 (20) 60 (15)
15 50 50 64 (11) 56 (9)
16 57(7) 80 (5)
17 100 (4) 75 (4)
18 50 (4) 333
19 100 (2) 100 (1)
20 ? ? 0(2) 0(1)

@ Flocchini, unpub. data; cited in Peterson et al. 1991
b Shull and Tipton 1987
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Table 3: Female pregnancy rates across different studies. See Table 1 for interpreta-
tion of location acronyms.

Location Years studied Percent adult | Reference
cows pregnant

YNP -Lamar Valley 1931-32 65 Meagher 1973
YNP -Lamar Valley 1940-50 81.9 Meagher 1973
YNP 1964-66 52 Meagher 1973
YNP -Mary Mountain 1990-92 37-45° Kirkpatrick et al. 1996
YNP -Northern Range 1990-92 49-542 Kirkpatrick et al. 1996
YNP 1996-97 78.5° Aune et al. 1998
YNP 1995-2001 8ged Fulleretal. 2007b
NBR 1957-67 86° Rutberg 1986
EINP 1996-99 50-70f Wilson et al. 2002
MBS 1984-88 70¢%¢ Gates & Larter 1990
WBNP 1952-74 47¢ Carbyn et al. 1993g
WBNP -Hay Camp & Delta 1998-99 62-72¢ Joly 2001
WBNP -Nyarling River 1998-99 54-89¢ Joly 2001

= Based on urinary & fecal steroid analysis * Based on autopsies

® Based on ovarian analysis " Based on genetic assignment

¢ Based on blood hormone assays € Including references therein

4 Based on ultrasound
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Table 4: Female calving percentages across different studies. See Table 1 for inter-
pretation of location acronyms.

Location Percent adult cows that calve peryear | Reference

SRL <50 Van Camp and Calef 1987
YNP 52 Meagher 1973

NBR 88 Rutberg 1986

WMWR 67 Halloran 1968

FNWR & WCNP 78 Haughen 1974

TSBH 19.0-73.3 Halbert et al. 2005
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Table 5: Female pregnancy rates across different studies, stratified by age or age class. Sample sizes (where avail-
able) in parentheses. See Table 1 for interpretation of location acronyms.

Pregnancy percentage Calving percentage
Age YNP! YNP? WMWR3 NBR* WBNP® EINP® NBR? BNP8

2 14 (7) 70 (10) 8 37(317) 5 (42) 12 (25) 4(24)
3 27 (11) 70 (10) 75 80(20) 55 (303) 61 (44) 71(93) 58 (26)
4 71(7) 95 (19) 93 88 (75) 60 (246) 46 (39) 64 (48)
5 63 (46) 93 61(324) 80 (35)

6 93 68 (25) 68 (41)
7 92 (12) 93 77 (26)

8 93 81(31) 81(64) 69 (44)
9 50 (8) 92 79 (28)

10 92 75 (28) 78 (48)
11 92 70 (27)

12 92 83(18) 72 (30)
13 92 63 (16)

14 80 79 (14) 45 (20) 36(23)
15 80 64 (11)

16 73 (11) 31(24)
17 50 (8)

18 43 (7)

19 17 (6)

20 ? ? ? ? 33(3) ?

1 Meagher 1973; study: 1964-1966

2 Aune et al. 1998; study: 1995-1997

3 Shaw and Carter 1989; study: 1981-1988

4 Flocchini, unpub. data; cited in Peterson et al. 1991

5 Carbyn et al. 1990 and references therein
6 Wilson et al. 2002; study: 1996-1999

7 Rutberg 1986

8 Berger and Cunningham 1994
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Table 6: Calf sex ratios before and after birth across different studies. Sample sizes
(where available) in parentheses. See Table 1 for interpretation of location acronyms.

Location Percent of calves that were male | Reference

NBR 62.2 (82) Rutberg 1986

YNP 56.6 (921)? Meagher 1973

FNWR & WCNP 54.5 (101)? Haugen 1974

WBNP 53 (472) Fuller 1962

BNP 50.6 (397)° Berger and Cunningham 1994
WMWR 51 (5633)° Halloran 1968

WMWR 45.9 (122)° Shaw and Carter 1989

EINP 54.4 (215) Wilson et al. 2002

FNWR 41.9 (205)° Wolff 1998

a Calves in utero
b Calves born
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Table 7: Estimated mean population growth rate (A) across different studies. See Table 1 for interpretation of loca-

tion acronyms.

Location Years studied A (95%C.1.) Reference

TSBH 1997-2002 1.021 (0.904, 1.154)2 Halbert et al. 2005

HM 1949-1982 1.038 (0.925, 1.164)? Van Vuren and Bray 1986
NBR 1909-1922 1.221 (1.179, 1.266)2 Fredin 1984

YNP 1970-2005 1.07° Fulleretal. 2007b

YNP -Northern 1970-1990 1.047 (0.897, 1.222)? Fuller et al. 2007b

YNP -Northern 1970-1997 1.018 (0.885, 1.171)2 Fuller et al. 2007b

YNP -Central 1970-1990 1.087 (1.034, 1.141)? Fuller etal. 2007b

YNP -Central 1970-1997 1.048 (0.987, 1.113)2 Fulleretal. 2007b

BNP 1964-1972 1.108°¢ Berger and Cunningham 1994
BNP 1985-1989 1.167¢ Berger and Cunningham 1994
MBS 1963-1989 1.223 (1.135, 1.317)2 Larter et al. 2000

MBS 1963-1998 1.151 (1.068, 1.242)2 Larter et al. 2000

SRL 1948-1983 1.003 (0.898, 1.120)? Van Camp and Calef 1987
EBH 2000-2006 1.19¢ Rowe and Backmeyer 2006
WBNP -Delta 1970-1999 0.914 (0.896, 0.932)° Joly and Messier 2004

WBNP -Hay Camp 1970-1999 0.970(0.942, 0.980)° Joly and Messier 2004

WBNP -Garden River 1970-1999 1.020 (0.990, 1.062)° Joly and Messier 2004

WBNP -Little Buffalo 1970-1999 1.030 (0.905, 1.062)° Joly and Messier 2004

WBNP -Nyarling River 1970-1999 1.139 (1.041, 1.246)° Joly and Messier 2004

WBNP -all 5 populations 1971-1999 0.950 (0.912, 0.990)? Bradley and Wilmshurst 2005
WBNP -all 5 populations 2000-2003 1.089 (0.778, 1.523)2 Bradley and Wilmshurst 2005

@ Population growth rate calculated by author from data in study
b Population growth rate presented in study, calculated from matrix model
¢ Population growth rate presented in study
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